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Abstract A (time-dependent) model for an electrochemical cell, comprising a dilute binary electrolytic
solution between two flat electrodes, is formulated. The method of matched asymptotic expansions (taking
the ratio of the Debye length to the cell width as the small asymptotic parameter) is used to derive simpli-
fied models of the cell in two distinguished limits and to systematically derive the Butler–Volmer boundary
conditions. The first limit corresponds to a diffusion-limited reaction and the second to a capacitance-limited
reaction. Additionally, for sufficiently small current flow/large diffusion, a simplified (lumped-parameter)
model is derived which describes the long-time behaviour of the cell as the electrolyte is depleted. The
limitations of the dilute model are identified, namely that for sufficiently large half-electrode potentials it
predicts unfeasibly large concentrations of the ion species in the immediate vicinity of the electrodes. This
motivates the formulation of a second model, for a concentrated electrolyte. Matched asymptotic analyses
of this new model are conducted, in distinguished limits corresponding to a diffusion-limited reaction and
a capacitance-limited reaction. These lead to simplified models in both of which a system of PDEs, in
the outer region (the bulk of the electrolyte), matches to systems of ODEs, in inner regions about the
electrodes. Example (steady-state) numerical solutions of the inner equations are presented.

Keywords Butler–Volmer equation · Electrolyte · Matched asymptotic expansions

1 Introduction

Electrolytic cells are usually composed of two conducting electrodes (made from different materials)
immersed in an electrolytic solution. Each electrode may react with the electrolyte and, in so doing, absorb
(or release) ions. Typically, the reaction on the negative electrode preferentially absorbs negative ions, while
that on the positive electrode preferentially absorbs positive ones. Thus, if the electrodes are connected in a
resistive circuit, electric current flows from the positive electrode to the negative (in the opposite direction
to electron flow).

Consider an isolated negative electrode (i.e., one not connected in a circuit). Here the reaction preferen-
tially absorbs negative ions, releasing negative charge onto the electrode. Since the electrode is a conductor,
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(a) (b)

Fig. 1 (a) A schematic of the equilibrium configuration at a negative electrode. Here the arrows indicate the direction and
strength of the electric field at various distances from the electrode. (b) The standard view of the electric double layer,
composed of a compact Stern layer on the surface of the electrode and a diffuse Debye layer at some distance from the
electrode

the negative charge released in this reaction tends to sit on the surface of the electrode. This in turn gives
rise to an electric field directed into the electrolyte. Close to the electrode surface there is a preponderance
of positive ions, and a dearth of negative ones because (a) negative ions are preferentially absorbed by the
reaction and (b) positive ions are attracted to the electrode (and negative ones repelled) by the electric
field. This excess of positive ions over negative ones in turn acts to slow the reaction rate and gives rise to
a net positive charge in the region adjacent to the electrode. The disparity in ion concentrations close to
the electrode surface, compared to that in the bulk of the electrolyte, sets up a diffusive flux of ions which
counteracts the fluxes caused by the electric field and eventually leads to an equilibrium in which the net
reaction rate on the surface and the net flux of ions are zero. Charge conservation also ensures that the
electric field, induced by the charge on the electrode surface, is exactly balanced by the field induced by the
positive charge in the electrolyte, so that the field far from the electrode is zero.1 The equilibrium scenario
is depicted schematically in Fig. 1a.

The standard electrochemical models of the behaviour of electrolytic solutions in the vicinity of an elec-
trode divide, in a rather ad-hoc way, the electrolytic solution into two regions, namely an electric double
layer in close proximity to the electrode (i.e., of the order of a few Debye lengths away) and a charge-neutral
region lying further away from the electrode (i.e., many Debye lengths away). In the charge-neutral region,
as the name suggests, the concentrations of negative and positive ions are such that their charges (almost)
exactly balance. In the electric double layer, on the other hand, there is a net charge separation, whereby
one species of ions occurs in a superabundance. The first continuum models of the double-layer region
seem to have been formulated by Gouy [1] and Chapman [2]. The Gouy–Chapman diffuse-double-layer
model is based on a set of two advection–diffusion equations (often termed the Nernst–Planck equations),
one for each ion species, coupled to the Poisson equation for the electric potential. This early model of the
double layer, while successfully predicting a number of phenomena, was at variance with other observa-
tions. The diffuse-double-layer model was accordingly subsequently amended by Stern [3] to include the
effects of a compact layer of ions adhering to the surface of the electrode (see Fig. 1b). In practice this
modification to the diffuse-double-layer model is accomplished by imposing a phenomenological boundary
condition on the electrode which accounts for the (linear) capacitance of the compact layer of ions on its
surface, i.e., as it is frequently termed, the Stern layer. Subsequently, the Stern model for the capacitance
of the compact layer was refined by Grahame [4] in the light of the latter’s experiments. The existence of
a Stern layer raises the question as to whether continuum models are appropriate for treating the very
fine-scale structure (occurring over a few ion spacings) encountered in the electric double layer. Here we
shall assume from the outset that it is and shall develop a self-consistent continuum model which is capable
of capturing the high density of ions which are thought to occur in the Stern layer. In this context we note

1 The distance over which this field decays is of the order of a few nanometres and is termed the Debye length.
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that the width of the electric double layer for a 0.1 molar solution is of the order of 1–2 nanometres, thus
indicating the appropriateness of a continuum model.

It is standard practice to relate the current flux J flowing through an electrode to the potential drop
φ across the double layer and the concentration of the ion species at its outer edge (where it abuts the
charge-neutral region) by the nonlinear Butler–Volmer equation (see, for example, [5,6]). In the case of a
simple chemical half-reaction Nzn− � Pzp+ + (zp + zn)e−, involving two soluble (ion) species P and N,
this is given by

J = (zp + zn)qeAv

(
K0 exp

(
−χc(zp + zn)qeφ

kT

)
[N] − K1 exp

(
χa(zp + zn)qeφ

kT

)
[P]
)

(1)

where [·] denotes a concentration, k is Boltzmann’s constant, T is the absolute temperature, qe is the
charge on a proton and Av is Avogadro’s number. The parameters χa and χc are phenomenological, and
typically, satisfy the relation χa + χc = 1 [5]. On the basis of a simple model, based on the Nernst–Planck
equations, we systematically derive a relationship of this form and determine the parameters χa and χc

in terms of the valencies of the two ion species predicting that χa = zp/(zp + zn) and χc = zn/(zp + zn).
However, such a simple relationship does not always hold between the charge carried by the ion species
and the phenomenologically determined parameters χa and χc (see, for example, [5, Table 29.1]) and we
believe that this discrepancy arises due to the Nernst–Planck equations breaking down in the vicinity of
the electrode where very high concentrations of a particular ion species occur.

Given the disparity in lengthscale between the width of the electric double-layer and the dimensions
of a typical electrochemical cell, it is perhaps somewhat surprising that more work has not been devoted
to analysing models of electrochemical cells using matched asymptotic expansions. There are three works
going back to the 1960s which use this technique, namely [7–9]. All three investigate steady-state problems;
reference [7] looks at the passage of a steady current through an electrode, reference [8] investigates the
potential adjacent to an electrode (in the presence of an advective flow normal to the electrode) and [9]
performs a matched asymptotic analysis about a membrane carrying a fixed charge. There has recently
been a revival of interest in the use of matched asymptotic expansions in this context, exemplified by Baker
and Verbrugge [10]; Bonnefant et al. [11]; Bazant et al. [12,13]. Baker and Verbrugge [10] investigate the
scenario in which the electrode reaction is extremely fast, so that the concentration of the reacting ion
species is zero on the electrode, and look for steady-state solutions for various geometries of electrode.2

In Bonnefant et al. [11] the behaviour of a three-species electrolyte is investigated in proximity to an
electrode. The boundary conditions imposed on the electrode surface are the Stern capacitance condition
and a Butler–Volmer condition; the latter determines the flux of the various ion species in terms of the
potential drop across the Stern layer. Bazant et al. [12] investigate the response of an electrolytic cell, with
blocked electrodes (which allow no current flow), to changes in the voltage applied across the electrodes.
In particular, this work contains the first derivation of a the dynamical behaviour of an electrochemical cell
over rapid ‘RC’ timescales. It also contains a comprehensive and readable review of the theoretical aspects
of the subject. Finally, [13] investigates the relationship between current flow in a cell and voltage drop
across it (the polographic curve), treating the model set out in [12] by matched asymptotic expansions.

The aim of the current work is to use matched asymptotic expansions to investigate the dynamic
structure of the solutions to various models of an electrochemical cell. In particular, the problem in the
charge-neutral region is formulated and the solution in the double layer used to derive boundary condi-
tions on the charge-neutral problem systematically. We find that the model based on the Nernst–Planck
equations predicts an unfeasibly large increase in ion concentration, across the double-layer region, when
applied to strongly reactive electrode–electrolyte reactions (typically encountered in electrolytic cells), in
all but extremely weak ion solutions and we argue that it is this, rather than the direct adhesion of ions

2 It turns out that there is no steady-state solution for an infinite planar electrode for the fast reaction scenario and this
discrepancy explains the difference between the structure of the boundary layer found in [10] and that derived herein.
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to the electrode (which is conventionally cited), that limits the accuracy of ‘dilute’ models based on the
Nernst–Planck equations. This model breakdown is a consequence of the application of these equations to
the double-layer region in which the solution is (typically) not dilute. In turn, this motivates us to consider
a modification to these equations which treats the concentration of solvent (water) as well as that of the
ion species (see, for example, [14, Sect. 10.6.4], where a similar approach is adopted to model the diffu-
sion of concentrated miscible fluids). An important feature of this model is that it contains an algebraic
incompressibility condition relating the concentration of all species. This encapsulates the impossibility of
squeezing in (or sucking out) more liquid matter into (from) a given volume than van der Waals forces will
allow.

In Sect. 2 we formulate a dilute (ion)-solution model based on the Nernst–Planck equations. In Sect. 2.3
we use the method of matched asymptotic expansions (based on a large dimensionless parameter) to reveal
boundary layers, in which charge neutrality is not satisfied, about the electrodes. These boundary layers are
separated by a ‘charge-neutral’ region in the bulk of the electrolyte. Matching between the regions leads
to boundary conditions on the equations in the ‘bulk region’ (including a version of the Butler–Volmer
condition) and hence to a simplified closed model for ion concentration in the ‘charge-neutral’ region,
whose nature depends upon the regime we are in. This model is formulated, and the difficulties associated
with large concentration increases across the double layer are discussed, in Sect. 2.4. In Sect. 2.7 we formu-
late a lumped-parameter model for the small-current/large-diffusion limit which describes the long-time
behaviour of the electrochemical cell as its reactants are depleted.

The difficulties associated with the large increase in concentration across the double layer lead us, in
Sect. 3, to formulate a model describing non-dilute ion solutions. A boundary-layer analysis (analogous to
that given in Sect. 2.3) is then performed on this model which leads to a simplified closed model describing
the evolution of the ion species’ concentrations in the charge-neutral region. Finally, in Sect. 4, we present
our conclusions.

A large number of variables and constants are used in the course of this work and, in order to ease the
task of the reader, a list of variables and constants are given in Appendix A.

2 An advection–diffusion model for ion concentration in a dilute electrolytic solution

2.1 Formulation

In this section we consider a model for a dilute binary electrolyte (containing two ion species) contained
between two electrodes. At the electrodes, reactions take place in which one, or both, ion species are
produced and/or consumed. Typically, such reactions produce or consume electrons leading to build-up of
charge on the electrode and, where both electrodes are connected through a resistive circuit, result in a
current being driven through that circuit and the electrolyte (in which case the electrode and electrolyte in
conjunction can be said to act as a battery). Alternatively, a current may be forced through the electrolyte
(by the application of an electromotive force across the electrodes) and the reactions at the electrodes
driven in a particular direction (electrolysis).

The analysis presented below relies, for its validity, on the ion concentrations being dilute at all points
within the electrolytic solution—in other words, on the water-volume fraction being close to one every-
where. As we shall show, there is a strong tendency for one ion species to become much more abundant
than the other in very close proximity to an electrode (namely positive ions at the negative electrode and
negative ions at the positive electrode). It turns out that it is really rather easy for the diluteness assumption
to be violated and in such instances a more sophisticated model, which also accounts for the concentration
of water, is required (see Sect. 3).

In the interests of transparency, we shall seek to express each of the modelling assumptions in as
elementary terms as possible.
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2.1.1 Chemical reactions at the electrode

Consider a reaction between insoluble material, forming part of the surface of an electrode, and with a
dilute binary electrolyte, consisting of positive Pzp+ ions (of valency zp), negative Nzn− ions (of valency
zn) and water. In general, the reaction rate R per unit surface area of electrode (measured in mol s−1 m−2),
in a dilute electrolyte, will be a function only of the concentrations of the two ion species at the electrode
and, possibly, of the number of reaction sites on the electrode (here we shall not consider this possibility).
The flux of ions, from the electrolytic solution, onto the electrode matches this reaction rate. Thus, in the
case of a plate electrode with surface at y = 0, with the electrolytic solution occupying the adjacent region
in y > 0, we have (see Appendix A for notation)

Fn|y=0 = γnR
(

N|y=0 , P|y=0
)

, Fp
∣∣
y=0 = γpR

(
N|y=0 , P|y=0

)
. (2)

2.1.2 The Nernst–Planck equations

The ions contained in the electrolyte diffuse, as a result of thermal excitation, and advect under the action
of an electric field E, which we write in terms of a potential φ via

E = −∂φ
∂y

ey.

Here ey is a unit vector in the y-direction. Balancing the drag on a Nzn− ion with the force acting on it due
to the electric field gives the ion’s velocity (in the absence of diffusion) as (see, e.g., [5])

vn = znqeφy

Mn
,

where the subscript y denotes partial differentiation with respect to y. In addition, the diffusion coefficient
Dn is given by the Stokes–Einstein relation [5,15]

Dn = kT
Mn

.

Using these two relations, we can write down the advection–diffusion equation for N in terms of Fn the
flux of Nzn− ions in the positive y-direction

∂N
∂t

+ ∂Fn

∂y
= 0 where Fn = −Dn

(
∂N
∂y

− znqe

kT

(
N
∂φ

∂y

))
, (3)

which is valid in the limit of low concentration of the Nzn− ions (high concentrations will be treated in
Sect. 3). Similar arguments lead to an advection–diffusion equation for P in terms of the flux Fp of Pzp+
ions in the positive y-direction

∂P
∂t

+ ∂Fp

∂y
= 0 where Fp = −Dp

(
∂P
∂y

+ zpqe

kT

(
P
∂φ

∂y

))
. (4)

Here Dp = kT/Mp is the diffusion coefficient of Pzp+ ions. In the electrochemical literature (3) and (4)
are typically termed the Nernst–Planck equations (see for example [16]).

2.1.3 The electric potential

The electric potential φ obeys Poisson’s equation:

∂

∂y

(
ε
∂φ

∂y

)
= −ρ,



244 G. Richardson, J. R. King

which can be rewritten in terms of the ion concentrations as

φyy = qeAv

ε

(
znN − zpP

)
0 < y < L, (5)

Where the electrolyte solution is weak in the vicinity of the electrode then ε ∼ εw, the dielectric constant of
water (εw ≈ 80ε0). Boundary conditions on the potential are provided by specifying an arbitrary reference
potential (here we choose φ = 0) on y = 0 and by considering the charge density C residing on the surface
of the electrode. Assuming that the conductivity of the electrode is much greater than that of the electrolyte
means that the electric field just inside the electrode is negligible (in comparison to that outside it), so that
the field on its surface is determined by the charge residing there. Consequently the boundary conditions
on φ at y = 0+ (just outside the electrode) are

φ|y=0+ = 0, εφy|y=0+ = −C. (6)

The rate of change of the surface charge density is found by imposing conservation of charge on the surface
of the electrode, which yields

dC
dt

= −qeAv(zpγp − znγn)R
(

N|y=0 , P|y=0
)+ J. (7)

2.1.4 Example chemical reaction at the electrode

We now list three possible different (reversible) chemical reactions that can take place between a binary
electrolyte and the electrode (each of which result in a different model)

(i) insoluble
reactant/product + αnNzn− � βpPzp+ + (znαn + zpβp)e− + insoluble

product/reactant ,

(ii) insoluble
reactant/product � βpPzp+ + βnNzn− + (zpβp − znβn)e− + insoluble

product/reactant ,

(iii) insoluble
reactant/product + αpPzp+ + αnNzn− � (znαn − zpαp)e− + insoluble

product/reactant .

(8)

Since electrons are always in plentiful supply, we assume that their concentration does not affect the
reaction rate and, in particular, it does not affect the reaction if the terms on the right-hand side of
(8), premultiplying e−, are negative rather than positive. Many electrode reactions also involve the pro-
duction/consumption of water at the electrode but, in the case of a dilute electrolytic solution, we may
systematically neglect its effects, because water production/consumption does not significantly affect water
concentration in a dilute solution. In order to illustrate our analysis we assume the following forms for the
reaction rates of the three reactions listed in (8):

(i) R = K0Nαn − K1Pβp ,
(ii) R = K2 − K3Pβp Nβn ,
(iii) R = K4Pαp Nαn − K5.

(9)

It should be noted that the reaction rates could take forms other than those given above in (9).

2.2 Non-dimensionalisation of the model

We nondimensionalise the model, comprised of Eqs. 2–7, assuming that diffusive effects balance electro-
static effects in the advection—diffusion equations for P and N, (3–4) and that φ non-dimensionalises with
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the thermal voltage.3 This leads to the scalings

y = Ly∗, t = L2

D̃
t∗, P = 	0P∗, N = 	0N∗, Fn = D̃	0

L
F∗

n ,

Fp = D̃	0

L
F∗

p , R = j
qeAv

R∗, φ = kT
qe
φ∗ C = εwkT

qeL
C∗, J = jJ∗,

where 	0 is the typical concentration of the electrolyte, j is a typical current density, L a typical length-
scale (for example the width of an electrolytic cell) and D̃ a typical diffusivity. In turn, these lead to the
dimensionless model comprised of the equations
∂N∗

∂t∗
+ ∂F∗

n

∂y∗ = 0, F∗
n = −κn

(
∂N∗

∂y∗ − znN∗ ∂φ∗

∂y∗

)
,

∂P∗

∂t∗
+ ∂F∗

p

∂y∗ = 0, F∗
p = −κp

(
∂P∗

∂y∗ + zpP∗ ∂φ∗

∂y∗

)
,

∂2φ∗

∂y∗2 = 1
δ2

(
znN∗ − zpP∗)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

in 0 < y∗ < 1, (10)

together with the boundary conditions on y∗ = 0

F∗
n = γn

ℵ R∗ (N∗, P∗) , F∗
p = γp

ℵ R∗ (N∗, P∗) ,
∂φ∗

∂y∗ = −C∗, φ∗ = 0, (11)

and the relation

δ2ℵdC∗

dt∗
= −(zpγp − znγn)R∗ (N∗∣∣

y∗=0 , P∗∣∣
y∗=0

)
+ J∗, (12)

and in which the dimensionless parameters δ, ℵ, κn, κp are given by

δ =
√

εwkT
qe

2Av	0L2 , ℵ = D̃	0qeAv

jL
, κn = Dn

D̃
, κp = Dp

D̃
. (13)

Here δ is related to the Debye length λD (the lengthscale of the Debye region in which charge neutrality
is not even approximately satisfied) by λD = δL. The parameter ℵ gives the ratio of the typical current
which can be carried by the diffusive flux of ions to that in the electric circuit. Further discussion of the
physical significance of these important parameters can be found in Sect. 4. It is noteworthy that we have
non-dimensionalised time with L2/D̃ and that this may correspond to a long timescale, which is much
longer than that associated with changes to the loading of the cell, if we take L to be the width of the cell.

Henceforth we will drop the asterisks from the dimensionless variables.

2.2.1 Example chemical reactions

Under this non-dimensionalisation, the chemical-reaction rates given in (9) non-dimensionalise to

(i) R∗ = k0N∗αn − k1P∗βp ,
(ii) R∗ = k2 − k3P∗βp N∗βn ,
(iii) R∗ = k4P∗αp N∗αn − k5,

(14)

where the dimensionless parameters k0, k1, k2 and k3 are given by

k0 = qeAv	
αn
0

j
K0, k1 = qeAv	

βp
0

j
K1, k2 = qeAv

j
K2,

k3 = qeAv	
βp+βn
0

j
K3, k4 = qeAv	

βp+βn
0

j
K4 k5 = qeAv

j
K5.

(15)

3 This turns out to be the only sensible choice for this scaling as a result of the exponential behaviour of the solution in the
vicinity of the electrode.
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2.2.2 Size of parameters

Typically, δ is very small; for instance, for a solution with typical concentration of 1 mol/l (which equates
to 1000 mol/m3) and width L = 10−3 m we find δ ≈ 5 × 10−7. In general, we expect this parameter to be
the governing small parameter in the model. Taking D̃ = 10−9 m2 s−1 (a typical diffusion coefficient for an
ion in water) and a 1 molar solution gives ℵ ≈ 1

10jL (where j and L are measured in S.I. units). A typical

current density encountered in a lead-acid battery is 100 Amp m−2 when a porous electrode is used (porous
electrodes can be manufactured with effective surface areas up to a 100,000 times higher than the apparent
electrode area). In the case of a flat electrode, which we consider here, current densities will be orders of
magnitude lower. The parameter ℵ may thus be fairly large but we do not expect it to become comparable
with 1/δ2. In fact, we shall identify two (distinguished) limits of interest, one in which ℵ = O(1) and the
other in which ℵ = O(1/δ). These correspond, respectively, to regimes in which diffusion of the reactants
to the electrode and the capacitance of the electrode control the rate of reaction.

2.3 Matched asymptotic analysis of the model in the vicinity of the electrode for δ � 1 and ℵ = O(1)

In this section we investigate the ℵ = O(1) regime. This, it turns out, is the regime in which the reaction rate,
and hence the resulting current flow, is controlled primarily by the diffusion of ions through the electrolyte
(i.e., ion diffusion is the rate limiting step of the reaction).

2.3.1 The outer (‘charge-neutral’) region

Inspection of Eq. 10c in the limit δ → 0 reveals that P ∼ znN/zp in the bulk of the cell (charge neutrality).
We therefore introduce an outer region lying between the two plates, denote variables in this region with
the superscript (o) and introduce the asymptotic expansions

P(o) ∼ P(o)0 , N(o) ∼ N(o)
0 , φ(o) ∼ φ

(o)
0 as δ → 0. (16)

Substituting the above in (10) gives, to leading order,

∂P(o)0

∂t
+ ∂F (o)

p,0

∂y
= 0, F (o)

p,0 = −κp

(
∂P(o)0

∂y
+ zpP(o)0

∂φ
(o)
0

∂y

)
, (17)

∂N(o)
0

∂t
+ ∂F (o)

n,0

∂y
= 0, F (o)

n,0 = −κn

(
∂N(o)

0

∂y
− znN(o)

0
∂φ

(o)
0

∂y

)
, (18)

P(o)0 = zn

zp
N(o)

0 . (19)

Manipulation of these equations leads to a linear diffusion equation for N(o)
0 , with effective diffusivity

κnκp(zp + zn)/(znκn + zpκp) and an equation for the potential φ(o)0 :

∂N(o)
0

∂t
=
(
κnκp(zp + zn)

znκn + zpκp

)
∂2N(o)

0

∂y2 , (20)

∂

∂y

(
(κp − κn)

∂N(o)
0

∂y
+ (zpκp + znκn)N

(o)
0
∂φ

(o)
0

∂y

)
= 0. (21)

Equations 19–21 form a fourth-order system for (P(o)0 , N(o)
0 ,φ(o)0 ), in contrast to the original system (10)

which is sixth-order. Hence we need to introduce boundary-layer regions in the vicinity of each electrode
in order to satisfy the boundary conditions on the problem. The boundary conditions on the fourth-order
system come from matching to these boundary layers and are given, in the two distinguished ℵ = O(1) and
ℵ = O(1/δ), in Sect. 2.4 and Sect. 2.6, respectively.
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2.3.2 The inner region (‘Debye layer’)

We introduce an inner region in the vicinity of the electrode (in which charge neutrality is not satisfied at
leading order) by rescaling the space variables by setting

y = δξ ,

denoting variables by the superscript (i) and expanding according to

N(i) = N(i)
0 + δN(i)

1 + · · · , P(i) = P(i)0 + δP(i)1 + · · · , φ(i) = φ
(i)
0 + δφ

(i)
1 + · · · ,

F (i)
n = F (i)

n,0

δ
+ F (i)

n,1 + · · · , F (i)
p = F (i)

p,0

δ
+ F (i)

p,1 + · · · , C = C0

δ
+ · · · ,

J = J0 + · · · .

(22)

Here the correction terms are included in order to determine the leading-order flux of ions through the
inner region. To leading order (10) can be written

∂F (i)
n,0

∂ξ
= 0, F (i)

n,0 = −κn

(
∂N(i)

0

∂ξ
− znN(i)

0
∂φ

(i)
0

∂ξ

)
, (23)

∂F (i)
p,0

∂ξ
= 0, F (i)

p,0 = −κp

(
∂P(i)0

∂ξ
+ zpP(i)0

∂φ
(i)
0

∂ξ

)
, (24)

∂2φ
(i)
0

∂ξ2 = znN(i)
0 − zpP(i)0 , (25)

while the boundary conditions (11) give

F (i)
n,0

∣∣∣
ξ=0

= 0, F (i)
p,0

∣∣∣
ξ=0

= 0, φ
(i)
0 |ξ=0 = 0. (26)

Integrating (23–24) and applying the boundary conditions (26a–26b) gives the following expressions for
the leading-order ion fluxes through the inner region

∂N(i)
0

∂ξ
− znN(i)

0
∂φ

(i)
0

∂ξ
= 0,

∂P(i)0

∂ξ
+ zpP(i)0

∂φ
(i)
0

∂ξ
= 0.

These relations can be integrated to find expressions for N(i)
0 and P(i)0 in terms of the leading-order potential

φ
(i)
0 via the Boltzmann distributions

N(i)
0 = A(t) exp

(
zn

(
φ
(i)
0 − V(t)

))
, P(i)0 = B(t) exp

(
−zp

(
φ
(i)
0 − V(t)

))
, (27)

where A(·) and B(·) are arbitrary functions of integration and we introduce V(·) (a translation in φ(i)0 ),
defined so that limξ→∞ φ

(i)
0 = V(t).

2.3.3 Matching the inner region to the outer region at leading order

Matching the leading-order inner expansion (as ξ → +∞) to the leading-order outer expansion (as y → 0),
and recalling that V(t) is defined by limξ→∞ φ

(i)
0 = V(t), we have

V(t) = φ
(o)
0

∣∣∣
y=0

, A(t) = N(o)
0

∣∣∣
y=0

, B(t) = P(o)0

∣∣∣
y=0

= zn

zp
N(o)

0

∣∣∣∣
y=0

(28)

∂φ
(i)
0

∂ξ
→ 0 as ξ → +∞, φ

(i)
0 → V(t) as ξ → +∞, (29)

Thus, A(t), B(t) and φ(t) are the limits, as y → 0, of the leading-order outer solutions for N, P and φ,
respectively. It follows from (28) that B(t) = znA(t)/zp.
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Fig. 2 A schematic of the
potential in the vicinity of
an electrode

2.3.4 The leading-order inner expansion

Returning to the inner expansion, we now substitute for N(i)
0 and P(i)0 in (25), recalling that B(t) = znA(t)/zp,

to find a (Poisson–Boltzmann) equation for φ(i)0 :

∂2φ
(i)
0

∂ξ2 = znA(t)
(

exp
(

zn

(
φ
(i)
0 − V(t)

))
− exp

(
−zp

(
φ
(i)
0 − V(t)

)))
.

This can, in the manner usual for equations of the form φ′′ = F(φ), be integrated once to give

∂φ
(i)
0

∂ξ
= ±

(
2A(t)

zp

)1/2 [
zpexp

{
zn

(
φ
(i)
0 − V(t)

)}
− (zp + zn)+ znexp

{
−zp

(
φ
(i)
0 − V(t)

)}]1/2
.

Here the arbitrary function of integration has been determined by applying the matching condition (29).

It is notable that the function zpezn(φ
(i)
0 −V(t)) − (zp + zn) + zne−zp(φ

(i)
0 −V(t)) ≥ 0 for zp ≥ 0 and zn ≥ 0.

Integrating this expression and applying the boundary conditions (11b) at leading order, φ(i)0 |ξ=0 = 0, and
the matching condition (29) leads to the following relations between ξ and φ(i)0 :

∂φ
(i)
0

∂ξ
=
(

2A(t)
zp

)1/2 (
zpezn(φ

(i)
0 −V(t)) − (zp + zn)+ zne−zp(φ

(i)
0 −V(t))

)1/2

ξ =
(

zp

2A(t)

)1/2 ∫ φ
(i)
0 −V(t)

−V(t)

dψ

(zpeznψ − (zp + zn)+ zne−zpψ)1/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

if V > 0, (30)

∂φ
(i)
0

∂ξ
= −

(
2A(t)

zp

)1/2 (
zpezn(φ

(i)
0 −V(t)) − (zp + zn)+ zne−zp(φ

(i)
0 −V(t))

)1/2

ξ =
(

zp

2A(t)

)1/2 ∫ −V(t)

φ
(i)
0 −V(t)

dψ

(zpeznψ − (zp + zn)+ zne−zpψ)1/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

if V < 0. (31)

Here (30) represents the potential in the vicinity of a negative electrode, while (31) represents that in the
vicinity of a positive electrode (see Fig. 2). Having derived expressions for the leading-order potential φ(i)0 ,
we use (11c) and (12) to obtain expressions for C0 and J0

C0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(

2A(t)
zp

)1/2 (
zpe−znV(t) − (zp + zn)+ znezpV(t)

)1/2
for V > 0,

(
2A(t)

zp

)1/2 (
zpe−znV(t) − (zp + zn)+ znezpV(t)

)1/2
for V < 0,

(32)

J0 = (zpγp − znγn)R
(

A(t)e−znV(t),
znA(t)

zp
ezpV(t)

)
. (33)
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Remark In the case where zp = zn an exact solution to the leading-order potential can be found by
integrating either of (30a) or (31a) to obtain

φ
(i)
0 = V(t)+ 2

zp
log

(
tanh

((
A(t)

2

)1/2

zp(ξ + ξ0)

))
for V > 0,

φ
(i)
0 = V(t)+ 2

zp
log

(
coth

((
A(t)

2

)1/2

zp(ξ + ξ0)

))
for V < 0,

where ξ0 is a constant of integration. This is the familiar Gouy–Chapman solution for the electric potential
about an electrode [1,2].

2.3.5 First-order inner solution

In order to determine the flux of the two ion species passing through the inner region, it is necessary to
proceed to next order in the inner. At this order, Eq. 10a–b and boundary conditions (11) yield

∂F (i)
n,1

∂ξ
= 0, F (i)

n,1 = −κn

(
∂N(i)

1

∂ξ
− zn

(
N(i)

0
∂φ

(i)
1

∂ξ
+ N(i)

1

∂φ
(i)
0

∂ξ

))
,

∂F (i)
p,1

∂ξ
= 0, F (i)

p,1 = −κp

(
∂P(i)1

∂ξ
+ zp

(
P(i)0

∂φ
(i)
1

∂ξ
+ P(i)1

∂φ
(i)
0

∂ξ

))
,

F (i)
n,1

∣∣∣
ξ=0

= γn

ℵ R
(

N(i)
0 |ξ=0, P(i)0 |ξ=0

)
, F (i)

p,1

∣∣∣
ξ=0

= γp

ℵ R
(

N(i)
0 |ξ=0, P(i)0 |ξ=0

)
.

It follows that the first-order fluxes of ions through the inner region are uniform and given by

F (i)
n,1 = γn

ℵ R
(

N(i)
0 |ξ=0, P(i)0 |ξ=0

)
= γn

ℵ R
(

A(t)e−znV(t),
zn

zp
A(t)ezpV(t)

)
, (34)

F (i)
p,1 = γp

ℵ R
(

N(i)
0 |ξ=0, P(i)0 |ξ=0

)
= γp

ℵ R
(

A(t)e−znV(t),
zn

zp
A(t)ezpV(t)

)
. (35)

2.3.6 Matching the first-order inner solution to the leading-order outer solution

We finish our analysis of the dilute regime by matching the fluxes of the two ion species in the outer region
to those in the inner region. Recalling that both inner fluxes are zero to leading order, we have the matching
conditions

lim
y→0

F (o)
n,0 = lim

ξ→+∞ F (i)
n,1, lim

y→0
F (o)

p,0 = lim
ξ→+∞ F (i)

p,1.

Application of these conditions, with the aid of (34–35) and the leading-order matching conditions (28),
gives the following boundary conditions on the outer model at y = 0

F (o)
n,0 = γn

ℵ R
(

N(o)
0 exp

(
−znφ

(o)
0

)
, P(o)0 exp

(
zpφ

(o)
0

))
, (36)

F (o)
p,0 = γp

ℵ R
(

N(o)
0 exp

(
−znφ

(o)
0

)
, P(o)0 exp

(
zpφ

(o)
0

))
. (37)

Note that φ(o)0 |y=0 represents the jump in potential from the electrode to the outer edge of the Debye layer
(inner region). It remains to relate the electric current flux J through the electrode to the outer variables.
Reference to (33) and the leading-order matching conditions (28) leads to the following condition:

J0 = (zpγp − znγn)R
(

N(o)
0 exp

(
−znφ

(o)
0

)∣∣∣
y=0

, P(o)0 exp
(

zpφ
(o)
0

)∣∣∣
y=0

)
, (38)
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on the current flux. It is also useful to manipulate (36–38) to obtain boundary conditions on N(o)
0 y and φ(o)0 y

∂N(o)
0

∂y

∣∣∣∣∣
y=0

= − zp(γn/κn + γp/κp)

ℵ(zn + zp)(zpγp − znγn)
J0, (39)

N(o)
0
∂φ

(o)
0

∂y

∣∣∣∣∣
y=0

= (γn/κn − zpγp/(κpzn))

ℵ(zn + zp)(zpγp − znγn)
J0. (40)

In summary, the leading-order outer problem (19–21) satisfies the boundary conditions (39–40) on y = 0
and the unknown functions A(t), B(t) and V(t), which appear in the inner solution, are determined via (28).

2.3.7 Example reactions at the electrode

In the three example reactions we consider in (8), the dimensionless reaction rate R is given by (14).
Furthermore, by inspection of (8), the constants γn and γp can be equated to

Case (i) γn = −αn γp = βp,
Case (ii) γn = βn γp = βp,
Case (iii) γn = −αn γp = −αp.

Using these facts allows us to rewrite the current flux (38) and boundary (39–40) conditions, in these three
cases, as

J0 = (zpβp + znαn)
(

k0N(o)
0

αn
exp(−znαnφ

(o)
0 )− k1P(o)0

βp
exp(zpβpφ

(o)
0 )
)∣∣∣

y=0

∂N(o)
0

∂y

∣∣∣∣∣
y=0

= zp(αn/κn − βp/κp)

ℵ(zn + zp)(zpβp + znαn)
J0

N(o)
0
∂φ

(o)
0

∂y

∣∣∣∣∣
y=0

= − (αn/κn + zpβp/(znκp))

ℵ(zn + zp)(zpβp + znαn)
J0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(i), (41)

J0 = (zpβp − znαn)
(

k2 − k3N(o)
0

βn
P(o)0

βp
exp
(
(zpβp − znβn)φ

(o)
0

))∣∣∣
y=0

∂N(o)
0

∂y

∣∣∣∣∣
y=0

= − zp(βn/κn + βp/κp)

ℵ(zn + zp)(zpβp − znβn)
J0

N(o)
0
∂φ

(o)
0

∂y

∣∣∣∣∣
y=0

= (βn/κn − zpβp/(znκp))

ℵ(zn + zp)(zpβp − znβn)
J0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ii), (42)

J0 = (zpαp − znαn)
(

k5 − k4N(o)
0

αn
P(o)0

αp
exp
(
(zpαp − znαn)φ

(o)
0

))∣∣∣
y=0

∂N(o)
0

∂y

∣∣∣∣∣
y=0

= − zp(αn/κn + αp/κp)

ℵ(zn + zp)(zpαp − znαn)
J0

N(o)
0
∂φ

(o)
0

∂y

∣∣∣∣∣
y=0

= (αn/κn − zpαp/(znκp))

ℵ(zn + zp)(zpαp − znαn)
J0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(iii), (43)

It is notable that (41a), (42a) and (43a) have the form of Butler–Volmer equations. In fact, the above analysis
provides a systematic derivation of the Butler–Volmer equations from the underlying Nernst–Planck equa-
tions. Moreover, this analysis uniquely determines the coefficients in the Butler–Volmer equations in terms
of the surface-reaction kinetics. For example (41), when written in dimensional terms, gives

J = (zpβp + znαn)qeAv

(
K0Nαn exp

(
−znαnqe

kT
φ
)

− K1Pβp exp

(
zpβpqe

kT
φ

))
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which, for αn = 1, βp = 1, is in line with the Butler–Volmer relation (1), and determines the
phenomenological parameters χa = zn/(zn + zp) and χc = zp/(zn + zp) uniquely. These may not cor-
respond with the best fit obtained from experimental data; however, this is not very surprising, given the
restrictions on the validity of the dilute model we shall outline in Sect. 2.5.

2.4 The outer problem for an electrolytic cell δ � 1 and ℵ = O(1)

We now pull together all the results of the preceding asymptotic analysis for the regime ℵ = O(1) which,
recall, is the regime in which the rate of reaction on the electrode is limited by ion diffusion.

2.4.1 Formulation

In order to illustrate the application of the boundary conditions and Butler–Volmer equations (derived
above in (36–38)), we consider an electrolytic cell consisting of two electrodes at dimensional positions
y = 0 and y = L (in other words, we non-dimensionalise with the width of the cell). These bound an
electrolytic solution, and are connected into a resistive circuit (or alternatively to a prescribed current
supply J(t)). Here we assume that, on the electrode at y = 0, the reaction rate is given by R(N, P) and that,
for every mole of reaction γn moles of Nzn− ions and γp moles of Pzp+, ions are produced while on the
electrode at y = L the reaction rate is given by S(N, P) and that for every mole of reaction ςn moles of
Nzn− ions and ςp moles of Pzp+ ions are produced.

As discussed in Sect. 2.3.1, charge neutrality implies that P = znN/zp in the outer region. We write
down the (dimensionless) outer equations and boundary conditions for the problem described above by
reference to (20–21) and (36–38). In their totality they are given by

∂N
∂t

= κnκp(zp + zn)

zpκp + znκn

∂2N
∂y2 , (44)

∂

∂y

(
zpFp − znFn

) = 0 where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fn = −κn

(
∂N
∂y

− znN
∂φ

∂y

)

Fp = −κpzn

zp

(
∂N
∂y

+ zpN
∂φ

∂y

) (45)

Fn|y=0 = γn

ℵ(zpγp − znγn)
J, (46)

Fp
∣∣
y=0 = γp

ℵ(zpγp − znγn)
J, (47)

J = (zpγp − znγn)R

(
Ne−znφ

∣∣
y=0 ,

zn

zp
Nezpφ

∣∣∣∣
y=0

)
, (48)

Fn|y=1 = ςn

ℵ(zpςp − znςn)
J, (49)

Fp
∣∣
y=1 = ςp

ℵ(zpςp − znςn)
J, (50)

J = −(zpςp − znςn)S

(
Ne−zn(φ−�)

∣∣∣
y=1

,
zn

zp
Nezp(φ−�)

∣∣∣∣
y=1

)
, (51)

where, for ease of notation, we have omitted the superscripts denoting outer-solution variables. Boundary
conditions (49–51) are obtained from (36–38) by making the transformation (I) γn → ςn, (II) γp → ςp,
(III) y → 1 − y, (IV) J → −J, (V) Fn → −Fn, (V) Fp → −Fp and (VII) φ → φ −�. Here (I–III) are self
explanatory; (IV), (V) and (VI) represents the fact that the current flow and the fluxes of Nzn− ions and
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Pzp+ ions are directed into the electrode on y = 1 (rather than out of the electrode at y = 0) while (VII)
results from the potential on the electrode at y = 1 being � (rather than 0 on the electrode at y = 0).

The system (44–51) consists of two coupled second-order PDEs for N and φ coupled to six boundary
conditions. In the case of electrolysis, J is typically prescribed and the remaining variable (in addition
to φ and N) to be determined is �. A naive boundary-condition count thus suggests that this system
is overdetermined with one more boundary condition than is required. Note, however, that (45) can be
rewritten as
∂J
∂y

= 0, where J = ℵ(zpFp − znFn). (52)

Here J (y) can be interpreted as the leading-order (dimensionless) current flux through the electrolyte.
It is straightforward to show that (46–47) and (49–50) give rise to the following two boundary conditions
on (52):

J |y=0 = J, J |y=1 = J. (53)

Hence the solution J (y) = J to (52) simultaneously satisfies both of the conditions (53), i.e., one of the
boundary conditions (46–47) and (49–50) is superfluous and the system (44–51) is not overdetermined.
Indeed, we can use the above argument to integrate (45) and eliminate two of the above conditions. The
latter is best done by giving conditions for Ny on y = 0 and y = 1. This results in the following system of
PDEs and boundary conditions for N, φ, � and J:

∂N
∂t

= κpκn(zn + zp)

zpκp + znκn

∂2N
∂y2 , (54)

(κp − κn)
∂N
∂y

+ (zpκp + znκn)N
∂φ

∂y
= − J

ℵzn
, (55)

∂N
∂y

∣∣∣∣
y=0

= − zp(γn/κn + γp/κp)

ℵ(zn + zp)(zpγp − znγn)
J, (56)

∂N
∂y

∣∣∣∣
y=1

= − zp(ςn/κn + ςp/κp)

ℵ(zn + zp)(zpςp − znςn)
J, (57)

J = (zpγp − znγn)R

(
Ne−znφ

∣∣
y=0 ,

zn

zp
Nezpφ

∣∣∣∣
y=0

)
, (58)

J = (znςn − zpςp)S

(
Ne−zn(φ−�)

∣∣∣
y=1

,
zn

zp
Nezp(φ−�)

∣∣∣∣
y=1

)
. (59)

In order to close this system, initial conditions on N must be imposed

N|t=0 = f (y), (60)

together with an additional relation for J. Typically, the latter takes one of two forms: (a) J is specified, as
in electrolysis or battery charging, or (b) a relation between J and the potential drop � across the cell is
imposed. In case (b) the usual relation to impose is of the form

J = (�(t))−1�, (61)

where �(t) is the (dimensionless) resistance of the circuit to which the battery is connected. It is sensible
to choose j, the typical current with which we nondimensionalise, so that � = O(1).

Remark Here we have non-dimensionalised the problem with the width of the cell. For certain prob-
lems the lengthscale L associated with ℵ = O(1) may be much smaller than the cell width (recall that
ℵ = D̃	0qeAv/jL and hence that ℵ = 1 implies L = D̃	0qeAv/j) . In such circumstances it is straightfor-
ward to generalise the formulation given above by writing down two separate problems on this lengthscale,
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one about each electrode, and matching the potential and electrolyte concentration to that in the bulk of
the cell (through far-field conditions on N and φ). Note that the timescale for changes in the bulk is much
longer than the timescale of the problem in these two regions.

2.4.2 An analytic solution to the model for constant current electrolysis

Here we consider the case in which J, the current flux, is a known constant. Physically this corresponds to
forcing a constant current through the electrolytic solution. With this restraint on J we may write down the
solution to the problem (54–57) and (60) for N in terms of an infinite series

N = h0 + (C − B)
(

Dt + y2

2

)
+ By −

∞∑
n=1

αn

nπ
cos(nπy) exp(−Dn2π2t), (62)

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αn = 2

∫ 1

0
(f ′(y)− B − (C − B)y) sin(nπy)dy,

h0 =
∫ 1

0
f (y)− By + B − C

2
y2dy,

and

D = κpκn(zn + zp)

zpκp + znκn
, B = − J

ℵ
zp

(zn + zp)

(γn/κn + γp/κp)

(zpγp − znγn)
, C = − J

ℵ
zp

(zn + zp)

(ςn/κn + ςp/κp)

(zpςp − znςn)
.

The transcendental (Butler–Volmer) equations (58–59) are then solved to obtain expressions for φ|y=0 and
φ|y=1 −� in terms of N|y=0 and N|y=1, respectively. Integrating (55) gives an expression for φ(y)

φ(y, t) = − J
ℵzn(zpκp + znκn)

∫ y

0

1
N(x, t)

dx − κp − κn

zpκp + znκn
log

(
N(y, t)
N|y=0

)
+ φ|y=0. (63)

This expression can then be used to evaluate φ|y=1 and hence �, the total potential drop across the cell.
Note that the solution becomes singular and breaks down if N goes to zero at any point; this occurs when
|J| becomes too large.

An example Here we consider the reactions

(i) N− + insoluble
reactant/product

� P+ + 2e− + insoluble
product/reactant

on y = 0,

(ii)
insoluble

reactant/product
� P+ + 2N− − e− + insoluble

product/reactant
on y = 1,

with the corresponding (dimensionless) reaction rates and reaction constants given by zn = 1, zp = 1 and

(i) R(N, P) = k0N − k1P γn = −1, γp = 1,
(ii) S(N, P) = k2 − k3N2P, ςn = 2, ςp = 1.

(64)

The ‘Butler–Volmer’ conditions (58–59) become

J = 2
(
k0Ne−φ − k1Neφ

)∣∣
y=0 , J =

(
k2 − k3N3e−(φ−�))∣∣∣

y=1
,

and may be solved to find φ|y=0 and φ|y=1 −� respectively

φ|y=0 = log

(
(J2/N2 + 16k1k0)

1/2 − J/N
4k1

)∣∣∣∣∣
y=0

, �− φ|y=1 = log

(
k2 − J
k3N3

)∣∣∣∣
y=1

. (65)
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By using the expression (63) to evaluate φ|y=1, we can eliminate φ|y=1 from (65) to find an expression for
�, the potential drop across the cell

� = −κp − κn

κp + κn
log

(
N|y=1

N|y=0

)
+ log

((
J2/N2|y=0 + 16k1k0

)1/2 − J/N|y=0

4k1

)

+ log

(
k2 − J

k3N|3y=1

)
− J

ℵ(κp + κn)

∫ 1

0

1
N

dy.

Remark It is perfectly consistent with the non-dimensionalisation for the (dimensionless) reaction rates
k0 and k1, in (64(i)), to both be large, thus effectively forcing a balance in which P|y=0 ≈ k0N|y=0/k1. A
similar comment applies to (64(ii)).

2.5 The steady problem and an outline of the difficulties associated with the dilute model

Here we consider the steady problem in which J = 0. Physically, this corresponds to measuring the voltage
drop across a battery with an extremely high-resistance voltmeter. With J = 0, there is a steady solution
for which N = const. and φ = const. Without loss of generality (since we have non-dimensionalised N
with the arbitrary constant 	0), we can take N = 1 and this then determines φ and � (which recall is the
potential drop across the cell) as the solution to two coupled transcendental equations

R
(

e−znφ ,
zn

zp
ezpφ

)
= 0, S

(
e−zn(φ−�), zn

zp
ezp(φ−�)

)
= 0.

In the particular example we considered in Sect. 2.4.2 this gives

φ = 1
2

log

(
k0

k1

)
, � = log

(
k2

k3

)
+ 1

2
log

(
k0

k1

)
. (66)

Referring back to the non-dimensionalisation of the problem, recall that φ (the potential in the elec-
trolyte) and � (the potential drop across the cell), have been scaled with the thermal voltage kT/qe.
At room temperature kT/qe ≈ 0.025V. In terms of most electrolytic cells, this corresponds to an extremely
small voltage; typical half-electrode potentials (measured against a standard hydrogen electrode) vary
from about −3.0 V to 3.0 V [5] (i.e., are of the order of 100kT/qe). Depending on the signs of φ and �, we
would thus expect the values of the ratios k0/k1 and k2/k3 to be either very large or very small, in a typical
electrolytic cell.

It is also worth investigating the implications that the large values of� and φ typically found in practice
have on the structure of the inner solution. Referring back to (27) (and recalling that zn = zp = 1) we see
that in this instance

N(i)
0 = exp

((
φ
(i)
0 − φ

))
, P(i)0 = exp

(
−
(
φ
(i)
0 − φ

))
,

where φ(i)0 is the inner potential (recall that A(t) = N|y=0 = 1, B(t) = (zn/zp)N|y=0 = 1 and V(t) = φ|y=0).
Furthermore, the boundary condition φ(i)0 |ξ=0 = 0 implies that

N(i)
0 |ξ=0 = exp (−φ), P(i)0 |ξ=0 = exp (φ) .

Thus, where φ = 10 (corresponding to a half electrode potential of 0.25 V)and zp = zn = 1, there is
roughly a 22,000-fold increase of the concentration of P(i)0 at the surface of the electrode ξ = 0 over that
in the solution, reflecting the strong exponential dependence of the ion concentrations on the potential.
Given that pure water (a rather small molecule) has a concentration of roughly 56 mol/l and that a typical
electrolytic solution might have a concentration of 0.1–1 mol/l, this type of increase in concentration is
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clearly infeasible for all but excessively weak electrolytic solutions. This indicates that the major reason for
the breakdown of diffuse models, similar to this one, which are based on the Nernst–Planck equations is
due to the breakdown of the Nernst–Planck equation as the ion concentrations become comparable to that
of the solute (water). This is in conflict with the frequently held view which holds it is due to ion adhesion
(see [5,17] for example).

In summary, it seems that the theory we have outlined above, which treats only the diffuse (Debye) part
of the electric double layer, is doomed to failure when applied to an electrode associated with a potential
difference many times greater than 0.025 V. In standard electrochemical theory this problem is overcome
by invoking a Stern layer in close proximity to the electrode. The problem with this approach is that it is
ad hoc and relies upon certain heuristic parameters. In the next section we develop an approach capable
of treating the highly concentrated solutions in the immediate vicinity of an electrode.

2.6 Results of the matched asymptotic analysis in the case δ � 1, ℵ = O(1/δ)

The (dimensionless) relationship (11c) between the gradient of the potential at the electrode (on y = 0)
and the electrode charge density C is, when written in terms of inner coordinates, φξ |ξ=0 = −δC. We
therefore expect δC to be of O(1). In turn, the charge density evolves according to the law (12) which we
can rewrite in the form

d
dt
(δC) = 1

δℵ
[
J − (zpγp − znγn)R

(
N|y=0 , P|y=0

)]
. (67)

Notably the (dimensionless) timescale for variations of the electrode charge density is of O(ℵδ). Thus,
where ℵ � 1/δ the charge density evolves over a much shorter timescale than the diffusion timescale
(which is of O(1) in these units). Whereas if ℵ 
 1/δ the charge density C evolves over a much longer
timescale than the diffusion timescale.

The other key condition to understanding the behaviour of the model is (11a–b) which relates the flux
of ions on the boundary to the reaction rate via

Fn|ξ=0 = γn

ℵ R
(

N|ξ=0 , P|ξ=0
)

, Fp
∣∣
ξ=0 = γp

ℵ R
(

N|ξ=0 , P|ξ=0
)

. (68)

Equation 67 implies that R and J are both of O(1) (except when dealing with some rather special transient
behaviours). It follows that Fn|ξ=0 = O(1/ℵ) and Fp|ξ=0 = O(1/ℵ). It is notable that we never need con-
sider the case ℵ � 1, which leads to large dimensionless ion fluxes, since choosing L sufficiently small (the
lengthscale with which we nondimensionalise) will give ℵ = O(1) (see (13) for the definition of ℵ). On the
other hand, if ℵ 
 1, and L is the width of the cell, we cannot rescale to obtain ℵ = O(1). Here diffusion is
sufficiently fast so that it is not rate-limiting, as is clear from (68). However, for O(1/δ) ≥ ℵ 
 1, it affects
the reaction rate by giving rise to variations in the ion concentrations at the edge of the Debye layer.

We now examine the distinguished limit ℵ = O(1/δ) (in which the diffusion timescale and that for
electrode charging are of the same order) over a timescale comparable to that for diffusion. Note that here
electrode charging is the rate-limiting step in the reaction rather than diffusion, which only influences the
reaction by changing the ion concentrations at the outer edges of the Debye layers. We define the new
parameter � by the relation ℵ = �/δ and proceed with a matched asymptotic analysis analogous to that
presented in Sect. 2.3. In the inner region this proceeds as in Sect. 2.3 (and the variables are expanded as in
(22)), except that now the leading-order inner expansion of (12) contains a time derivative of C0 and the
first-order fluxes F (i)

n,1 and F (i)
p,1 are both zero. Proceeding with the matching to the outer variables (which

are expanded as in (16)) gives the following boundary conditions on the leading-order outer problem at
y = 0 (on dropping sub and superscripts):



256 G. Richardson, J. R. King

∂φ

∂t
+ zpe−znφ − (zn + zp)+ znezpφ

znzpN(ezpφ − e−znφ)

∂N
∂t

=
(

2
zp

)1/2 sgn(φ)(zpe−znφ − (zn + zp)+ znezpφ)1/2

zn�N1/2(ezpφ − e−znφ)

×
(
(zpγp − znγn)R

(
Ne−znφ ,

zn

zp
Nezpφ

)
− J
)

,

∂N
∂y

= 0,

(69)

which hold on the equations for the leading-order outer variables N and φ

∂N
∂t

= κpκn(zn + zp)

zpκp + znκn

∂2N
∂y2 , (70)

∂φ

∂y
=
(

κn − κp

zpκp + znκn

)
1
N
∂N
∂y

. (71)

On the other electrode, at y = 1, the leading-order outer problem satisfies the boundary conditions

dφ
dt

− d�
dt

+ zpe−zn(φ−�) − (zn + zp)+ znezp(φ−�)

znzpN(ezp(φ−�) − e−zn(φ−�))
∂N
∂t

=
(

2
zp

)1/2 sgn((φ −�))(zpe−zn(φ−�) − (zn + zp)+ znezp(φ−�))1/2

zn�N1/2(ezp(φ−�) − e−zn(φ−�))

×
(
(zpγp − znγn)R

(
Ne−zn(φ−�), zn

zp
Nezp(φ−�)

)
+ J
)

,

∂N
∂y

= 0,

(72)

It is noteworthy that there is a solution to (70), (69b) and (72b) for which N is a constant. Without loss
of generality we can write N = 1. Solving (71) for φ then gives φ = φ(t). Substitution of this, together with
N = 1, in (69a) and (72a) then leads to two coupled ODEs for φ (the potential in the electrolyte) and �
(the potential drop across the cell), namely

dφ
dt

=
(

2
zp

)1/2
sgn(φ)

(zpe−znφ − (zp + zn)+ znezpφ)1/2

zn�(ezpφ − e−znφ)

×
[
(zpγp − znγn)R

(
e−znφ ,

zn

zp
ezpφ

)
− J0

]
,

d�
dt

= dφ
dt

+
(

2
zp

)1/2

sgn(�− φ)
(zpe−zn(φ−�) − (zp + zn)+ znezp(φ−�))1/2

zn�(ezp(φ−�) − e−zn(φ−�))

×
[
(zpςp − znςn)S

(
e−zn(φ−�), zn

zp
ezp(φ−�)

)
+ J0

]
.

(73)

Remark In the above we have considered the distinguished limit in which the diffusion timescale is of the
same order as the timescale for electrode charging. In regimes where ℵ 
 O(1/δ) the diffusion timescale
is much shorter than that for electrode charging. The resulting time-dependent process (over the electrode
charging timescale) is then described by coupled ODEs of the form (73).

2.7 A lumped-parameter model for the long-time behaviour of the cell in the small current/large diffusion
limit 1 � ℵ � 1/δ2

Here we shall focus on the model (54–61) obtained as a result of taking the distinguished limit δ → 0 with
ℵ = O(1), and then formally allow ℵ → +∞ (in other words, we let δ → 0 before letting ℵ → +∞).
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Rescaling time with ℵ, and assuming the resistance of the circuit is either a constant or varies over this
long timescale only, leads to a lumped-parameter model for the long-time variations of the variables N, J,
φ and �. This model can be shown to have a wider range of validity than that suggested by this derivation
(indeed it is valid for ℵ in the range 1 � ℵ � 1/δ2).

Introducing the long-time scale τ , defined by t = ℵτ , into (54) and applying the method of multiple-scales
yields

∂N
∂t

+ 1
ℵ
∂N
∂τ

= κpκn(zn + zp)

zpκp + znκn

∂2N
∂y2 , (74)

Expanding in powers of 1/ℵ as follows

N = N0(τ )+ 1
ℵN1(t, τ , y)+ · · · , J = J0(τ )+ · · · , φ = φ0(τ )+ · · · , � = �0(τ )+ · · · ,

and substituting in (74), (56) and (57) yields

∂N1

∂t
+ ∂N0

∂τ
= κpκn(zn + zp)

zpκp + znκn

∂2N1

∂y2 , (75)

∂N1

∂y

∣∣∣∣
y=0

= − zp(γn/κn + γp/κp)

(zn + zp)(zpγp − znγn)
J0, (76)

∂N1

∂y

∣∣∣∣
y=1

= − zp(ςn/κn + ςp/κp)

(zn + zp)(zpςp − znςn)
J0, (77)

Integrating (75) between y = 0 and y = 1 and applying the boundary conditions (76–77) we have∫ 1

0

∂N1

∂t
dy + dN0

dτ
= − zpκpκn

zpκp + znκn

[
(ςn/κn + ςp/κp)

(zpςp − znςn)
− (γn/κn + γp/κp)

(zpγp − znγn)

]
J0.

Application of the usual secularity argument (i.e., by noting N1 cannot grow unboundedly as t increases
without violating the asymptotic expansion) yields the first-order ODE

dN0

dτ
= − zpκpκn

κp + znκn

[
(ςn/κn + ςp/κp)

(zpςp − znςn)
− (γn/κn + γp/κp)

(zpγp − znγn)

]
J0, (78)

which is to be solved subject to the initial condition (derived from (60))

N0(0) =
∫ 1

0
f (y)dy. (79)

Substituting the expansion of the variables in (58–59) and (61) yields the three extra equations required to
close the model, namely

J0 = (zpγp − znγn)R
(

N0e−znφ0 ,
zn

zp
N0ezpφ0

)
, (80)

J0 = (znςn − zpςp)S
(

N0e−zn(φ0−�0),
zn

zp
N0ezp(φ0−�0)

)
, (81)

J0 = �0

�(τ)
. (82)

3 A high-concentration model of ion diffusion

We now consider a concentrated solution comprised of the three components Pzp+ ions, Nzn− ions and
water. A simple multiphase model, following the approach adopted in [14, Sect. 10.6.4] that describes the
movement of these three species, is
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∂N
∂t

+ ∂Fn

∂y
= 0, Fn = Nv − Dn

(
∂N
∂y

− znqe

kT
N
∂φ

∂y

)
, (83)

∂P
∂t

+ ∂Fp

∂y
= 0, Fp = Pv − Dp

(
∂P
∂y

+ zpqe

kT
P
∂φ

∂y

)
, (84)

∂W
∂t

+ ∂Fw

∂y
= 0, Fw = Wv − Dw

∂W
∂y

, (85)

HnN + HpP + HwW = 1, (86)
∂

∂y

(
ε(W)

∂φ

∂y

)
= qeAv

(
znN − zpP

)
. (87)

where once again new notation may be found in Appendix A. Here (86) represents conservation of vol-
ume, which we have chosen to model by a linear relationship between the three species. In order that the
relation (86) be satisfied, a bulk velocity v needs to be introduced into the advection–diffusion equations
(83–85). The final equation, (87), is Poisson’s equation for the electric potential; note that we have left the
permittivity ε inside the divergence since this cannot be regarded as a constant where the water concentra-
tion varies markedly.4 Significant variations in the concentrations of all the reactants mean that we should
also allow the diffusion coefficients Dn, Dp and Dw to be functions of the concentrations N, P and W. We
note that a similar model has also been given by Farrell et al. [18] within the electroneutral region of an
electrolyte.

Boundary conditions In Sect. 2 we formulated boundary conditions on a model in which both ion spe-
cies are in dilute solution. There was therefore no need to consider the dynamics of the electrode surface in
response to accretion (or loss) of material on (from) the electrode. However, we need to be more careful
when considering concentrated solutions, not least because, if the boundaries remain fixed, and a greater
volume of material is removed from the solution on one electrode than is replaced at the other, there will
be no solution to the model equations (83–87) satisfying the boundary conditions (since the total volume
flux HnFn + HpFp + HwFw turns out to be a function of time only). We thus consider the surface of the
left-hand electrode to be at y = Y(t). Taking account of the moving electrode surface, and equating the
flux of the various species to their production on the electrode surface, leads to the following conditions
on y = Y(t):

Fn − dY
dt

N = γnR (N, P, W) , (88)

Fp − dY
dt

P = γpR (N, P, W) , (89)

Fw − dY
dt

W = γwR (N, P, W) . (90)

The conditions on the potential φ, the current flux J and the electrode surface charge density C are similar
to before, being
dC
dt

= −(zpγp − znγn)qeAvR
(
N|y=Y(t), P|y=Y(t), W|y=Y(t)

)+ J, (91)

ε(W)
∂φ

∂y

∣∣∣∣
y=Y(t)

= −C, φ|y=Y(t) = 0. (92)

Finally, we need to impose a condition on the evolution of the electrode surface. Here, for brevity, we
assume that the total volume of material absorbed from the electrolyte, in the reaction, is equal to the
volume of solid reactant created at the electrode surface
dY
dt

= − (γnHn + γpHp + γwHw
)

R
(
N|y=Y(t), P|y=Y(t), W|y=Y(t)

)
. (93)

4 Water has a permittivity roughly 80 times that of free space and many times that of most other materials.
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Note that it is relatively straightforward to extend this formulation to cover cases in which the volume of
the reactant created is proportional, rather than simply equal to, the volume of the reactants consumed.
If we do this, however, the total volume of electrode plus solution changes and we thus have to include a
component of the flow tangential to the surface of the electrode in order that the electrolyte is to remain
incompressible.

Non-dimensionalisation We nondimensionalise (83–93) as follows:

N = 1
Hw

N∗, P = 1
Hw

P∗, W = 1
Hw

W∗, Fn = D̃
HwL

F∗
n , Fp = D̃

HwL
F∗

p ,

Fw = D̃
HwL

F∗
w, φ = kT

qe
φ∗, t = L2

D̃
t∗, y = Ly∗, Y = LY∗, (94)

v = D̃
L

v∗, C = εwkT
qeL

C∗, J = jJ∗, ε = εwε
∗, R = j

qeAv
R∗.

Note that the non-dimensionalisation applied above is essentially the same as (10) (that applied to the dilute
model) provided we take 	0, the reference ion concentration, equal to that of pure water 	0 = 1/Hw.
Applying (94) to (83–93) leads to
∂N∗

∂t∗
+ ∂F∗

n

∂y∗ = 0, F∗
n = N∗v∗ − κn

(
∂N∗

∂y∗ − znN∗ ∂φ∗

∂y∗

)
, (95)

∂P∗

∂t∗
+ ∂F∗

p

∂y∗ = 0, F∗
p = P∗v∗ − κp

(
∂P∗

∂y∗ + zpP∗ ∂φ∗

∂y∗

)
, (96)

∂W∗

∂t∗
+ ∂F∗

w

∂y∗ = 0, F∗
w = W∗v∗ − κw

∂W∗

∂y∗ , (97)

hnN∗ + hpP∗ + W∗ = 1, (98)
∂

∂y∗

(
ε∗(W∗)∂φ

∗

∂y∗

)
= 1
δ2

(
znN∗ − zpP∗) . (99)

These are subject to boundary conditions on y∗ = Y∗(t∗)

ℵ
(

F∗
n − N∗ dY∗

dt∗

)
= γnR∗ (N∗, P∗, W∗) , (100)

ℵ
(

F∗
p − P∗ dY∗

dt∗

)
= γpR∗ (N∗, P∗, W∗) , (101)

ℵ
(

F∗
w − W∗ dY∗

dt∗

)
= γwR∗ (N∗, P∗, W∗) , (102)

ε∗(W∗)∂φ
∗

∂y∗ = −C∗, φ∗ = 0, (103)

δ2ℵdC∗

dt∗
= −(zpγp − znγn)R∗ (N∗, P∗, W∗)+ J∗, (104)

ℵdY∗

dt∗
= −(γnhn + γphp + γw)R∗ (N∗, P∗, W∗) , (105)

where the dimensionless parameters are

δ =
√
εwHwkT
qe

2AvL2 , ℵ = D̃qeAv

HwjL
, hn = Hn

Hw
, hp = Hp

Hw
. (106)

and the dimensionless diffusion coefficients, which may be functions of N and P, are

κw = Dw

D̃
, κn = Dn

D̃
, κp = Dp

D̃
(107)

Henceforth we shall drop the ∗ superscripts.
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We can eliminate W from this model by summing (95) multiplied by hn with (96) multiplied by hp and
(97) which, on referral to (98), gives

∂

∂y

(
hnFn + hpFp + Fw

) = 0. (108)

Boundary data on y = Y(t) for this equation can be obtained by summing (100) multiplied by hn, (101)
multiplied by hp and (102) to obtain

(hnFn + hpFp + Fw) = dY
dt

+ 1
ℵ
(
γnhn + γphp + γw

)
R (N, P, W) .

Integrating (108), applying the boundary condition above and substituting for Ẏ from (105) we have

hnFn + hpFp + Fw ≡ 0.

We can then substitute for the fluxes Fn, Fp and Fw from (95–97) and for ∂W/∂y by differentiating (98)
with respect to y to obtain the following expression for the bulk velocity v, in terms of N and P:

v = hn(κn − κw)
∂N
∂y

+ hp(κp − κw)
∂P
∂y

+ (zphpκpP − znhnκnN)
∂φ

∂y
. (109)

This now leaves a reduced model for N, P and φ consisting of (95–96), (109), (99–101) and (103–105).
Henceforth we shall consider R(·) to be a function of N and P only.

3.1 Matched asymptotic analysis of the case δ � 1, ℵ = O(1)

In this section we perform a matched asymptotic analysis of the concentrated solution model comprising
(95–96), (99–101), (103–105) and (109) about the electrode, in the limit δ → 0. This parallels the matched
asymptotic analysis conducted in Sect. 2.3 for dilute solutions.

3.1.1 The outer ‘charge-neutral’ region

We start by looking for an asymptotic solution to the governing equations (95–96), (99) and (109) for N, P
and φ in an outer region (where charge neutrality is satisfied) by making the expansion

P(o) = P(o)0 + · · · , N(o) = N(o)
0 + · · · , φ(o) = φ

(o)
0 + · · · , v(o) = v(o)0 + · · · . (110)

To leading order in (99) we find

P(o)0 = zn

zp
N(o)

0 , (111)

and from (95–96) and (109) we obtain

∂N(o)
0

∂t
+ ∂F (o)

n,0

∂y
= 0, F (o)

n,0 = N(o)
0 v(o)0 − κn

(
∂N(o)

0

∂y
− znN(o)

0
∂φ

(o)
0

∂y

)
, (112)

∂N(o)
0

∂t
+ zp

zn

∂F (o)
p,0

∂y
= 0, F (o)

p,0 = zn

zp

(
v(o)0 N(o)

0 − κp

(
∂N(o)

0

∂y
+ zpN(o)

0
∂φ

(o)
0

∂y

))
, (113)

v(o)0 = ∂N(o)
0

∂y

(
hn(κn − κw)+ hp

zn

zp
(κp − κw)

)
+ znN(o)

0
∂φ

(o)
0

∂y

(
hpκp − hnκn

)
. (114)

In order to find the boundary conditions on the outer equations at the electrodes, we need to match to an
inner region about each electrode.
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3.1.2 Inner region about the electrode

Motivated by Eq. 99, we introduce a stretched coordinate about the surface of the electrode at y = Y(t)
by writing

y = Y(t)+ δξ . (115)

Under this rescaling the model, comprised of Eqs. 95–96, 109, 99–101 and 103–105, transforms to

δ
∂N(i)

∂t
− dY

dt
∂N(i)

∂ξ
+ ∂F (i)

n

∂ξ
= 0, F (i)

n = N(i)v − 1
δ
κn

(
∂N(i)

∂ξ
− znN(i) ∂φ

(i)

∂ξ

)
, (116)

δ
∂P(i)

∂t
− dY

dt
∂P(i)

∂ξ
+ ∂F (i)

p

∂ξ
= 0, F (i)

p = P(i)v − 1
δ
κp

(
∂P(i)

∂ξ
+ zpP(i)

∂φ(i)

∂ξ

)
, (117)

v = 1
δ

[
hn(κn − κw)

∂N(i)

∂ξ
+ hp(κp − κw)

∂P(i)

∂ξ
+ (zphpκpP(i) − znhnκnN(i))

∂φ(i)

∂ξ

]
, (118)

∂

∂ξ

(
ε
∂φ(i)

∂ξ

)
=
(

znN(i) − zpP(i)
)

, (119)

(
F (i)

n − N(i) dY
dt

)∣∣∣∣
ξ=0

= γn

ℵ R
(

N(i)|ξ=0, P(i)|ξ=0

)
, (120)

(
F (i)

p − P(i)
dY
dt

)∣∣∣∣
ξ=0

= γp

ℵ R
(

N(i)|ξ=0, P(i)|ξ=0

)
, (121)

ε
∂φ(i)

∂ξ
= −δC, φ(i) = 0 on ξ = 0, (122)

δ2ℵdC
dt

= −(zpγp − znγn)R
(

N(i)|ξ=0, P(i)|ξ=0

)
+ J, (123)

dY
dt

= −(γnhn + γphp + γw)
R
(
N(i)|ξ=0, P(i)|ξ=0

)
ℵ , (124)

where the (i) superscript denotes an inner variable. Note also that ε is a function of the water concentration
W(i) which can be expressed in terms of the N(i) and P(i) by the relation W(i) = 1 − hnN(i) − hpP(i). In this
inner region we look for an expansion of the form

N(i) = N(i)
0 + δN(i)

1 + · · · , P(i) = P(i)0 + δP(i)1 + · · · , φ(i) = φ
(i)
0 + δφ

(i)
1 + · · · ,

F (i)
n = 1

δ
F (i)

n,0 + F (i)
n,1 + · · · , F (i)

p = 1
δ
F (i)

p,0 + F (i)
p,1 + · · · , v(i) = 1

δ
v(i)0 + v(i)1 + · · · , (125)

Y = Y0 + · · · , C = 1
δ

C0 + · · · , J = J0 + · · · ,

and find, at leading order, that

F (i)
n,0 = N(i)

0 v(i)0 − κn

(
∂N(i)

0

∂ξ
− znN(i)

0
∂φ

(i)
0

∂ξ

)
= 0, (126)

F (i)
p,0 = P(i)0 v(i)0 − κp

(
∂P(i)0

∂ξ
+ zpP(i)0

∂φ
(i)
0

∂ξ

)
= 0, (127)
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v(i)0 = hn(κn − κw)
∂N(i)

0

∂ξ
+ hp(κp − κw)

∂P(i)0

∂ξ
+
(

zpκphpP(i)0 − znκnhnN(i)
0

) ∂φ(i)0

∂ξ
, (128)

∂

∂ξ

(
ε (ν)

∂φ
(i)
0

∂ξ

)
= znN(i)

0 − zpP(i)0 where ν = 1 − hnN(i)
0 − hpP(i)0 , (129)

C0 = −ε (ν) ∂φ
(i)
0

∂ξ
, φ

(i)
0 = 0, on ξ = 0, (130)

J0 = (zpγp − znγn)R
(

N(i)
0 |ξ=0, P(i)0 |ξ=0

)
, (131)

dY0

dt
= −(γnhn + γphp + γw)

R
(

N(i)
0 |ξ=0, P(i)0 |ξ=0

)
ℵ , (132)

Combination of (126–128) leads to two first-order PDEs for N(i)
0 and P(i)0

(
κnκp + N(i)

0 hnκp(κw − κn)+ P(i)0 hpκn(κw − κp)
) ∂N(i)

0

∂ξ

+
(

znhnκnκpN(i)
0

2 + hp
(
znκnκp − znκnκw − zpκpκw

)
N(i)

0 P(i)0 − znκpκnN(i)
0

) ∂φ(i)0

∂ξ
= 0, (133)

(
κnκp + N(i)

0 hnκp(κw − κn)+ P(i)0 hpκn(κw − κp)
) ∂P(i)0

∂ξ

−
(

zphpκnκpP(i)0
2 + hn

(
zpκnκp − zpκpκw − znκnκw

)
N(i)

0 P(i)0 − zpκnκpP(i)0

) ∂φ(i)0

∂ξ
= 0, (134)

We thus have a coupled fourth-order system comprised of the three PDEs, (129) and (133–134) for N(i)
0 , P(i)0

and φ(i)0 . In the case of electrolysis (J0 specified) these must be solved subject to two boundary conditions
(130b) and (131). For a correctly specified problem we therefore require far-field conditions which use up
a further two degrees of freedom. Matching to the outer region as ξ → +∞ gives

N(i)
0 → A, P(i)0 → zn

zp
A, φ

(i)
0 → V as ξ → +∞,

where A = N(o)
0 |y=Y(t) and V = φ

(o)
0 |y=Y(t). By comparison with the leading-order outer problem for the

dilute electrolyte we expect A = N(o)
0 |y=Y(t) to be determined by the solution to the outer problem and φ(o)0

by the solution to (129) and (133–134). The far-field conditions, that we require to close the leading-order
inner problem, are thus

N(i)
0 → A, P(i)0 → zn

zp
A as ξ → +∞, (135)

It is now helpful to carry out a linearised analysis of the solution for N(i)
0 , P(i)0 and φ(i)0 about the far-field

behaviour (135).

3.1.3 Linearised analysis of the solution to (129) and (133–134) as ξ → +∞

In order to determine the number of degrees of freedom in the far-field behaviour (135) of (129) and
(133–134) we linearise about (135) as follows:

N(i)
0 = A + f (ξ), P(i)0 = zn

zp
A + g(ξ), φ

(i)
0 = V + ψ(ξ), (136)
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where f � A, g � A, ψ � V and V is a constant which is to be determined. Substituting in (129) and
(133–134) and linearising leads to

(
κnκp + Ahnκp(κw − κn)+ zn

zp
Ahpκn(κw − κp)

)
f ′(ξ)

+
(

znhnκnκpA2 + hp
(
znκnκp − znκnκw − zpκpκw

) zn

zp
A2 − znκpκnA

)
ψ ′(ξ) = 0, (137)

(
κnκp + Ahnκp(κw − κn)+ zn

zp
Ahpκn(κw − κp)

)
g′(ξ)

−
(

hpκnκp
zn

2

zp
A2 + hn

(
zpκnκp − zpκpκw − znκnκw

) zn

zp
A2 − κnκpznA

)
ψ ′(ξ) = 0, (138)

ε(ν)
∂2ψ

∂ξ2 = znf (ξ)− zpg(ξ), (139)

where ν = 1 − A
(

hn + zn
zp

hp

)
is a constant and κn, κp and κw are evaluated for N = A, P = znA/zp.

Integrating (137–138) (noting that f → 0, g → 0 and ψ → 0 as ξ → +∞) gives the following expressions
for f and g:

f (ξ) = Azn
(
κpκn(zp − A(zphn + znhp))+ Ahpκw(znκn + zpκp)

)
Aκw(zpκphn + znκnhp)+ κnκp(zp − A(zphn + znhp))

ψ(ξ), (140)

g(ξ) = −Azn
(
κpκn(zp − A(zphn + znhp))+ Ahnκw(znκn + zpκp)

)
Aκw(zpκphn + znκnhp)+ κnκp(zp − A(zphn + znhp))

ψ(ξ). (141)

These expressions can, in turn, be substituted in (139) to obtain a linear constant coefficient ODE for ψ ,
namely

ε(ν)
∂2ψ

dξ2 − znA
{
(zn + zp)(zp − A(zphn + znhp))κpκn + Aκw(znκn + zpκp)(zphn + znhp)

}
[
Aκw(zpκphn + znκnhp)+ κnκp(zp − A(zphn + znhp))

] ψ = 0.

Integrating this and applying the boundary condition that ψ → 0 as ξ → +∞ gives

ψ = ϒ exp

⎛
⎝−(znA)1/2

[ {
(zn + zp)(zp − A(zphn + znhp))κpκn

}
ε(ν)

[
Aκw(zpκphn + znκnhp)+ κnκp(zp − A(zphn + znhp))

]

+
{
Aκw(znκn + zpκp)(zphn + znhp)

}
ε(ν)

[
Aκw(zpκphn + znκnhp)+ κnκp(zp − A(zphn + znhp))

]
]1/2

ξ

⎞
⎠ , (142)

where ϒ is an arbitrary constant. Note that the expression inside the square brackets is always positive.
This is because (I) A, zn, zp, κn, κp, hn and hp are all necessarily positive (a consequence of their physical
definitions) and (II) A(zphn + znhp) ≤ zp (a consequence of requiring non-negative water concentrations;
see Eq. 98).

We can deduce from (142) that there are two degrees of freedom in the far-field behaviour (135), repre-
sented by the constants V = limξ→+∞ φ

(i)
0 andϒ (which are determined by the solution). Application of the

boundary conditions (130b), (131) and (135) to the PDEs (129) and (133–134) results in a boundary-value
problem to which one might reasonably expect a unique solution in the case where J0 is specified.
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3.1.4 Continuation of the boundary-layer analysis

The inner expansion at first order Proceeding to first order in the inner expansion in (116–117), (120–121)
and (124) gives

∂

∂ξ

(
F (i)

n,1 − dY0

dt
N(i)

0

)
= 0, F (i)

n,1 − N(i)
0

dY0

dt

∣∣∣∣
ξ=0

= γn

ℵ R
(

N(i)
0 |ξ=0, P(i)0 |ξ=0

)
,

∂

∂ξ

(
F (i)

p,1 − dY0

dt
P(i)0

)
= 0, F (i)

p,1 − P(i)0
dY0

dt

∣∣∣∣
ξ=0

= γp

ℵ R
(

N(i)
0 |ξ=0, P(i)0 |ξ=0

)
.

Integrating, applying the boundary conditions and using the results (131) and (132), we obtain

F (i)
n,1 = J0

ℵ(zpγp − znγn)

(
γn − N(i)

0

{
γnhn + γphp + γw

})
, (143)

F (i)
p,1 = J0

ℵ(zpγp − znγn)

(
γp − P(i)0

{
γnhn + γphp + γw

})
. (144)

The outer region revisited Subtracting (113) from (112) and integrating gives

F (i)
n,0 − zp

zn
F (i)

p,0 = (κp − κn)
∂N(o)

0

∂y
+ (zpκp + znκn)N

(o)
0
∂φ

(o)
0

∂y
= M(t), (145)

where M(·) is an arbitrary function of integration. Matching the leading-order outer fluxes to the first-order
inner fluxes gives F (o)

n,0 |y=Y(t) = limξ→∞ F (i)
n,1 and F (o)

p,0 |y=Y(t) = limξ→∞ F (i)
p,1 from which it follows that

F (o)
n,0

∣∣∣
y=Y(t)

= J0

ℵ(zpγp − znγn)

(
γn − N(o)

0

∣∣∣
y=Y(t)

{
γnhn + γphp + γw

})
, (146)

F (o)
p,0

∣∣∣
y=Y(t)

= J0

ℵ(zpγp − znγn)

(
γp − zn

zp
N(o)

0

∣∣∣∣
y=Y(t)

{
γnhn + γphp + γw

})
. (147)

Application of the above boundary conditions to (145) yields

(κp − κn)
∂N(o)

0

∂y
+ (zpκp + znκn)N

(o)
0
∂φ

(o)
0

∂y
= − J0

znℵ . (148)

This equation may be used to find an expression for N(o)
0 φ

(o)
0 y which can then be substituted in (114) and

one of (112–113) to obtain the following nonlinear parabolic equation for N(o)
0 :

∂N(o)
0

∂t
= ∂

∂y

[{
κnκp(zp + zn)

zpκp + znκn
+ zphn + znhp

zp(zpκp + znκn)

(
znκn(κw − κp)+ zpκp(κw − κn)

)
N(o)

0

}
∂N(o)

0

∂y

]

+J0

ℵ
∂

∂y

[
(hpκp − hnκn)N

(o)
0 + κn

(zpκp + znκn)

]
. (149)

A boundary condition on this PDE, at y = Y(t), can be obtained by using the matching condition (146)
and eliminating φ(o)0 y using (148); it is

∂N(o)
0

∂y

[
N(o)

0
(zphn + znhp)(znκn(κp − κw)+ zpκp(κn − κw))

zp(znκn + zpκp)
− (zn + zp)κnκp

znκn + zpκp

]

= J0

ℵ

[
κn + N(o)

0 (hpκp − hnκn)

znκn + zpκp
+ γn − N(o)

0 (γnhn + γphp + γw)

zpγp − znγn

]
. (150)
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A boundary condition on (148) is obtained by solving the leading-order inner problem and matching to
the outer. In summary, the equations for the leading-order outer variables (N(o)

0 and φ(o)0 ) are (148) and
(149).

Remark Equation 149 for N(o)
0 is linearly well-posed, provided the term in curly brackets is positive. Since

κn, κp, κw, zn and zp are all positive, it follows that

znκn(κw − κp)+ zpκp(κw − κn) = κw(znκn + zpκp)− (zn + zp)κnκp > −(zn + zp)κnκp.

In turn, since N(o)
0 ≥ 0, it follows that

{
κnκp(zp + zn)

zpκp + znκn
+ zphn + znhp

zp(zpκp + znκn)

(
znκn(κw − κp)+ zpκp(κw − κn)

)
N(o)

0

}

>
κnκp(zp + zn)(1 − N(o)

0 (hn + znhp/zp))

zpκp + znκn
. (151)

The condition (98) implies hnN(o)
0 + hpP(o)0 ≤ 1 and the relation P(o)0 = znN(o)

0 /zp then gives N(o)
0

(hn + znhp/zp)) ≤ 1. Substituting this inequality in (151) (and noting that zn, zp, κn, κp are all positive)
leads to the desired result{
κnκp(zp + zn)

zpκp + znκn
+ zphn + znhp

zp(zpκp + znκn)

(
znκn(κw − κp)+ zpκp(κw − κn)

)
N(o)

0

}
> 0,

from which we conclude that (149) is linearly well-posed.

3.2 Numerical solution to the boundary-layer equations

In this section we briefly investigate solutions to the boundary-layer equations (133–134) with bound-
ary conditions (130b–131) and (135). The easiest way to find solutions to this quasi-steady system is to
shoot from a large value of ξ to ξ = 0, using the far-field behaviour of the solution determined in (136)
and (140–142). Since the value of A is predetermined by the value of N(o)

0 (via the matching condition
A = N(o)

0 |y=Y(t)) in the bulk, this leaves two parameters, V and ϒ , which are iterated upon in the shoot-
ing method. It is noteworthy that Eqs. 133–134 are invariant under translations in φ(i)0 . This means that,
whatever value of V is chosen initially, when shooting to ξ = 0, a translation in φ(i)0 can be made to the
resulting solution to give a solution to (133–134) which satisfies (130b). The shooting method thus requires
that only ϒ be adjusted until (131) is satisfied.

For simplicity we take a reaction rate given by

R(N, P) = k0N − k1P

and consider only the steady state J0 = 0. It follows that γn = −1, γp = 1 and, from (131), that
P(i)0 /N

(i)
0 |ξ=0 = k0/k1. In addition we take ε(ν) = (1 + 79ν)/80.5 In the case κn = κp = κw = hn =

hp = zn = zp = 1 we plot two solutions, for k1/k0 = 2 × 10−32 and k1/k0 = 0.02, respectively, in Fig. 3. In
both cases we take A = 0.1. In the parameter regime we investigate the ratio k1/k0 has to be very small
in order to obtain a large potential drop across the double layer; indeed, to get close to a dimensional
potential drop of 1V requires k1/k0 = O(10−32). Given that the size of the small parameter δ is typically
O(10−6), this might seem to invalidate the asymptotics we have carried out. If, however, k1/k0 is either

5 This represents a linear interpolation of the (dimensionless) permittivity of a mixture of water and ions in which the latter
have a permittivity equal to that of free-space.
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Fig. 3 Numerical solution of the inner equations about the negative electrode with far field conditions N(i)
0 → 0.1, P(i)0 → 0.1

as ξ → +∞. In the left-hand figures N(i)
0 is represented by the dashed line and P(i)0 by solid line

very small or very large there is an extra layer (see Eq. 152 below) but this does not affect the leading-order
outer formulation just given.6 It is notable that there are solutions to (130a) and (133–134) of the form

N(i)
0 = 0, P(i)0 = 1

hp
, φ

(i)
0 = Mξ − zp

2ε(0)hp
ξ2,

and N(i)
0 = 1

hn
, P(i)0 = 0, φ

(i)
0 = Mξ − zn

2ε(0)hn
ξ2,

where M is an arbitrary constant. In the case k1/k0 � 1 (for which N(i)
0 � 1 on ξ = 0) we can linearise

about the former of these solutions to find an asymptotic solution for this extra layer in the vicinity of the
electrode

N(i)
0 ∼ ε exp

(
znκn + zpκp

κn
φ
(i)
0

)
,

P(i)0 ∼ 1
hp

+ ε

(
F exp

(
zpκp

κw
φ
(i)
0

)
− hn

hp
exp

(
znκn + zpκp

κn
φ
(i)
0

))

φ
(i)
0 ∼ Mξ − zp

2ε(0)hp
ξ2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

where ε � 1. (152)

when F is a constant which is fixed by matching to the rest of the inner region and, through that, to the
outer. In some ways this extra layer is like the Stern layer, most notably because it contains almost solely
molecules of one species (in this case of the positive ions).

In Fig. 3 we plot two numerical solutions to the inner problem. In the former (for which k1/k0 = 2×10−32)
the extra layer is apparent close to the boundary.

6 Note that neither N(i)
0 nor P(i)0 can surpass 1/hn and 1/hp, respectively (see (98)).
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3.2.1 The simplified (high-concentration) model of an electrolytic cell δ � 1 and ℵ = O(1)

Here we collect the results of the asymptotic analysis, as conducted in this section, to formulate a simplified
model in an electrolytic cell. On writing the position of the free boundaries on the left-hand electrode as
y = Yl(t) and that of the right-hand electrode as y = 1 − Yr(t), the leading-order outer equations and
boundary conditions for the ion concentration (149–150) become, on dropping sub and superscripts,

∂N
∂t

= ∂

∂y

[{
zphn + znhp

zp(zpκp + znκn)

(
znκn(κw − κp)+ zpκp(κw − κn)

)
N + κnκp(zp + zn)

zpκp + znκn

}
∂N
∂y

]

+ J
ℵ
∂

∂y

[
(hpκp − hnκn)N + κn

(zpκp + znκn)

]
, (153)

∂N
∂y

∣∣∣∣
y=Yl(t)

[
N|y=Yl(t)

(zphn + znhp)(znκn(κp − κw)+ zpκp(κn − κw))

zp(znκn + zpκp)
− (zn + zp)κnκp

znκn + zpκp

]

= J
ℵ
[
κn + N|y=Yl(t)(hpκp − hnκn)

znκn + zpκp
+ γn − N|y=Yl(t)(γnhn + γphp + γw)

zpγp − znγn

]
, (154)

∂N
∂y

∣∣∣∣
y=1−Yr(t)

[
N|y=1−Yr(t)

(zphn + znhp)(znκn(κp − κw)+ zpκp(κn − κw))

zp(znκn + zpκp)
− (zn + zp)κnκp

znκn + zpκp

]

= J
ℵ
[
κn + N|y=1−Yr(t)(hpκp − hnκn)

znκn + zpκp
+ ςn − N|y=1−Yr(t)(ςnhn + ςphp + ςw)

zpςp − znςn

]
. (155)

In cases in which J is specified (and when coupled to an initial condition N|t=0 = f (y)), this gives a closed
system for N. Note that the boundary condition (155) has been obtained from (154) by making the trans-
formation Yl → Yr, J → −J, y → 1 − y, γn → ςn, γp → ςp and γw → ςw. These equations for N couple to
ODEs for Yl and Yr

dYl

dt
= − (γnhn + γphp + γw)

(zpγp − znγn)

J
ℵ ,

dYr

dt
= − (ςnhn + ςphp + ςw)

(zpςp − znςn)

J
ℵ , (156)

and (148) for the potential φ

∂φ

∂y
= − J

ℵzn(znκn + pκp)N
+ κn − κp

znκn + zpκp

1
N
∂N
∂y

. (157)

A boundary condition on this problem is given by

φ|y=Yl(t) = lim
ξ→+∞ φ̃. (158)

Here limξ→+∞ φ̃ is the effective surface potential (i.e., the potential drop across the Debye layer) and is
obtained by solving the leading-order inner problem about the left-hand electrode (see Eqs. 129, 130b, 131,
133, 134 and 135), namely

(
κnκp + Ñhnκp(κw − κn)+ P̃hpκn(κw − κp)

) ∂Ñ
∂ξ

+
(

znhnκnκpÑ + hp
(
znκnκp − znκnκw − zpκpκw

)
P̃ − znκpκn

)
Ñ
∂φ̃

∂ξ
= 0, (159)

(
κnκp + Ñhnκp(κw − κn)+ P̃hpκn(κw − κp)

) ∂P̃
∂ξ

−
(

zphpκnκpP̃ + hn
(
zpκnκp − zpκpκw − znκnκw

)
Ñ − zpκnκp

)
P̃
∂φ̃

∂ξ
= 0, (160)
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∂

∂ξ

(
ε(ν)

∂φ̃

∂ξ

)
= znÑ − zpP̃ where ν = 1 − hnÑ − hpP̃, (161)

φ̃|ξ=0 = 0, R
(

Ñ|ξ=0, P̃|ξ=0

)
= J

zpγp − znγn
, (162)

Ñ → N|y=Yl(t), P̃ → zn

zp
N|y=Yl(t), as ξ → +∞, (163)

where y = Yl(t) + δξ and inner variables on the left-hand electrode are denoted by tildes. The potential
drop across the whole cell (including the boundary layers) � is given by
� = φ̂|η=0 (164)
where φ̂ is the solution to the leading-order inner problem on the right-hand electrode(
κnκp + N̂hnκp(κw − κn)+ P̂hpκn(κw − κp)

) ∂N̂
∂η

+
(

znhnκnκpN̂ + hp
(
znκnκp − znκnκw − zpκpκw

)
P̂ − znκpκn

)
N̂
∂φ̂

∂η
= 0, (165)

(
κnκp + N̂hnκp(κw − κn)+ P̂hpκn(κw − κp)

) ∂P̂
∂η

−
(

zphpκnκpP̂ + hn
(
zpκnκp − zpκpκw − znκnκw

)
N̂ − zpκnκp

)
P̂
∂φ̂

∂η
= 0, (166)

∂

∂η

(
ε(ν)

∂φ̂

∂η

)
= znN̂ − zpP̂ where ν = 1 − hnN̂ − hpP̂, (167)

S
(

N̂|η=0, P̂|η=0

)
= − J

zpςp − znςn
, (168)

N̂ → N|y=1−Yr(t) P̂ → zn

zp
N|y=1−Yr(t) φ̂ → φ|y=1−Yr(t) as η → +∞, (169)

Here y = 1 − Yl(t)− δη and inner variables on the right-hand electrode are denoted by hats.

Remark 1 Taking the limit in which N � 1, P � 1, J � 1, Ñ � 1, P̃ � 1, N̂ � 1, P̂ � 1 and linearising
equations (153–169) yields the dilute model (54–59).

Remark 2 The other distinguished limit δ � 1 and ℵ = O(1/δ) is discussed in Appendix B.

3.3 The special case in which the dimensionless diffusivities are constants

Under the assumption that κn, κp and κw are not functions of the concentrations N, P and W, the inner
equations can be integrated explicitly to find expressions for N(i)

0 , P(i)0 and W(i)
0 in terms of the potential

φ
(i)
0 and an auxillary unknown ψ . This is most easily seen when v (the advection velocity) is not eliminated

from the inner equations, so that those for the concentrations and material fluxes are

δ
∂N(i)

∂t
− dY

dt
∂N(i)

∂ξ
+ ∂F (i)

n

∂ξ
= 0, F (i)

n = N(i)v − 1
δ
κn

(
∂N(i)

∂ξ
− znN(i) ∂φ

(i)

∂ξ

)
, (170)

δ
∂P(i)

∂t
− dY

dt
∂P(i)

∂ξ
+ ∂F (i)

p

∂ξ
= 0, F (i)

p = P(i)v − 1
δ
κp

(
∂P(i)

∂ξ
+ zpP(i)

∂φ(i)

∂ξ

)
, (171)

δ
∂W(i)

∂t
− dY

dt
∂W(i)

∂ξ
+ ∂Fw

∂ξ
= 0, Fw = W(i)v − 1

δ
κw
∂W(i)

∂ξ
, (172)

hnN(i) + hpP(i) + W(i) = 1. (173)
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Proceeding with the inner expansion (125), supplemented by v(i) = v(i)0 /δ + · · · , and substituting in
(170–173) we arrive at

F (i)
n,0 = N(i)

0 v(i)0 − κn

(
∂N(i)

0

∂ξ
− znN(i)

0
∂φ

(i)
0

∂ξ

)
= 0, (174)

F (i)
p,0 = P(i)0 v(i)0 − κp

(
∂P(i)0

∂ξ
+ zpP(i)0

∂φ
(i)
0

∂ξ

)
= 0, (175)

F (i)
w,0 = W(i)

0 v(i)0 − κw
∂W(i)

0

∂ξ
= 0, (176)

hnN(i)
0 + hpP(i)0 + W(i)

0 = 1, (177)

Integrating (174–176), and applying the incompressibility condition (177), we obtain the following relations
for the leading-order concentrations

N(i)
0 = N̄(t) exp(zn(φ

(i)
0 − V(t)))ψκw/κn , P(i)0 = zn

zp
N̄(t) exp(−zp(φ

(i)
0 − V(t)))ψκw/κp , (178)

W(i)
0 =

(
1 −

(
hn + zn

zp
hp

)
N̄(t)

)
ψ , (179)

(
1 −

(
hn + zn

zp
hp

)
N̄(t)

)
ψ + hnN̄(t) exp(zn(φ

(i)
0 − V(t)))ψκw/κn

+hp
zn

zp
N̄(t) exp(−zp(φ

(i)
0 − V(t)))ψκw/κp = 1. (180)

The presence of the additional variable ψ is a consequence of the incompressibility condition, which is
represented here by (180). Matching to the outer region at leading order determines the functions N̄(t)
and V(t)

N̄ = N(o)
0 |y=Y(t), V = φ

(o)
0 |y=Y(t). (181)

The calculation then proceeds as outlined above. The one notable difference is that we can now use (131)
together with the solutions for the leading-order (inner) concentrations (178a–b) and the matching condi-
tions (181) to obtain a relation between the current through the electrode and the concentrations of the
reactant just outside the Debye layer

J0 = (zpγp − nγn) R
(

N(o)
0 e−nφ(o)0 ψκw/κn ,

zn

zp
N(o)

0 ezpφ
(o)
0 ψκw/κp

)∣∣∣∣
y=Y(t)

,

{(
1 −

(
hn + zn

zp
hp

)
N(o)

0

)
ψ + hnN(o)

0 e−znφ
(o)
0 ψκw/κn + hp

zn

zp
N(o)

0 ezpφ
(o)
0 ψκw/κp

}∣∣∣∣
y=Y(t)

= 1,

In effect this is a generalisation of the Butler–Volmer condition to concentrated solutions.
In turn this extra condition, and the corresponding condition on the electrode at y = 1 − Yr(t), means

that we do not need to solve explicitly, for the inner variables, in the boundary-layer regions to close the
simplified (high-concentration) model comprised of (153–157) (i.e., the integrals derived above suffice).
In this case the full model is provided by (153–157) supplemented by two ‘Butler–Volmer’ conditions
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on each electrode

J = (zpγp − znγn) R
(

Ne−znφψκw/κn ,
zn

zp
Nezpφψκw/κp

)∣∣∣∣
y=Yl(t)

, (182)

{(
1 −

(
hn + zn

zp
hp

)
N
)
ψ + hnNe−znφψκw/κn + hp

zn

zp
Nezpφψκw/κp

}∣∣∣∣
y=Yl(t)

= 1, (183)

J = (znζn − zpζp) S
(

Ne−zn(φ−�)θκw/κn ,
zn

zp
Nezp(φ−�)θκw/κp

)∣∣∣∣
y=1−Yr(t)

, (184)

{(
1 −

(
hn + zn

zp
hp

)
N
)
θ + hnNe−zn(φ−�)θκw/κn + hp

zn

zp
Nezp(φ−�)θκw/κp

}∣∣∣∣
y=1−Yr(t)

= 1. (185)

Here θ plays an analogous role to ψ , on the right-hand electrode.

4 Conclusion

We have formulated a time-dependent advection–diffusion model for an electrochemical cell, consisting of
two flat electrodes bounding an binary electrolyte, in the case of a dilute electrolytic solution (see Sect. 2).
We showed that this model breaks down in the vicinity of the electrode, for all but tiny concentrations
of electrolyte, wherever the potential drop between the electrode and the bulk of the electrolyte is many
times larger than the thermal voltage kT/qe ≈ 0.025 V. In turn this led us, in Sect. 3, to consider a model
of concentrated electrolytic solutions which tracks the concentration of the two ion species and the solvent
(water). We calculated examples of steady states to this model. These were qualitatively in agreement
with the accepted electrochemical wisdom which states that the ion distribution in the immediate vicinity
of an electrode consists of a Debye layer (where charge neutrality is not satisfied but the ion species are
still relatively dilute) and a Stern layer, lying on the surface of the electrode, (where there is a massive
preponderance of one of the ion species over the other species and water molecules). In this context
we note that the equilibrium theories of Kralj-Iglic et al. [19] and Borukhov et al. [20] (which are based
on statistical-mechanical approaches) yield exact solutions which predict similar behaviour in the double
layer. It is worth emphasising, however, that both only consider the special case in which all the ions and
the water molecules are of exactly the same size and do not address time-dependent issues.

We have analysed both the dilute and concentrated models asymptotically, identifying two key dimen-
sionless parameters namely δ, which gives the ratio of the width of the Debye layer to the lengthscale of
non-dimensionalisation, and ℵ, which gives the ratio of the typical current which can be carried by diffusive
flux of ions through the electrolyte to that in the electric circuit. In practically all physically relevant sce-
narios δ � 1 holds. We then identified two distinguished limits (I) ℵ = O(1) and (II) in which ℵ = O(1/δ).
Physically, (I) corresponds to a regime in which the diffusion of ions to the electrodes is the rate-limiting
step in the reaction and the diffusion timescale across the cell is of the same order as that for the reaction,
whereas (II) corresponds to a regime in which the rate-limiting step in the reaction is the charging of
the electrode and double layer (and so can be said to be capacitance limited) and for which the diffusion
timescale across the cell is comparable to the reaction timescale. Thus, in case (II), although diffusion is
not a rate-limiting step, it can influence the reaction rate by making changes to the ion concentration at
the edge of the Debye layers. It is important to note that both δ and ℵ depend upon the lengthscale L with
which the model is non-dimensionalised and that, while it may seem natural to choose L to be the width of
the cell, it is not always appropriate to do so. In fact, it is illuminating to identify the time and lengthscales,
τD and lD, associated with a diffusively controlled reaction (regime (I)) and those, τC and lC, associated
with a capacitively controlled reaction (regime (II)). These are given by



Time-dependent modelling and asymptotic analysis of electrochemical cells 271

τD = D̃
(
	0qeAv

j

)2

, lD = D̃	0qeAv

j
,

τC = 1
j
(εwkT	0Av)

1/2, lC =
(

D̃
j

)1/2

(εwkT	0Av)
1/4.

We note that where δ � 1 then lD 
 lC and τD 
 τC. Thus, provided lD is less than or comparable to
the width of the cell, any sudden change in the conditions (for example changes in the current flow J)
will result firstly in a capacitively controlled process (over the timescale τC) and subsequently a diffusively
controlled one (over the timescale τD). If, however, lD is much greater than the cell width, the behaviour
will never be primarily controlled by diffusion (the current flows are just not big enough in comparison
to diffusion). In this instance the process is initially capacitatively controlled as the electrodes and double
layers charge up (on the timescale τC). Over the longer timescale

τu = L	0qeAv

j
the ion concentration (which is approximately uniform across the cell) is depleted to a level at which the
reaction ceases and current stops flowing. A lumped-parameter model describing this process is given in
Sect. 2.7.

In both of the asymptotic regimes identified we conducted analyses to derive simplified models. Where
we start from the dilute model, this approach leads to boundary conditions on a set of equations in the
charge-neutral electrolyte bulk (these consist of a diffusion equation for the ion concentration and a first
order PDE for the potential). In the diffusively controlled regime (case (I)) these boundary conditions
relate the flux of both positive and negative ions onto the electrode with the current flowing in the cir-
cuit J (in a fairly obvious way) and relate J to the ion-species concentrations (at the electrode) and the
potential drop across the double layer. Interestingly, for simple reactions, the latter takes the form of a
Butler–Volmer relation. In the capacitatively controlled regime (case (II)), where the ion concentration is
initially uniform, a model, consisting of two coupled ODEs for the potential in the bulk of the electrolyte
and the total potential drop across the cell, results. The simplified models arising from the model for a
concentrated electrolytic solution are not, in general, as elegant as those found for the dilute solution,
essentially because no analytic solution can be found in the double-layer region close to an electrode. An
exception to this is where the diffusivities of the various species are not concentration-dependent and, in
this instance, we can find a direct analogue to the Butler–Volmer boundary condition and an elegant simpli-
fied (concentrated solution) model. Even in the cases where the diffusivities are concentration-dependent,
the simplified model provides a far more computationally efficient way of tackling the problem than solv-
ing the full problem numerically because of the vast disparity in scales between the double-layer region
adjacent to an electrode and the diffusive region outside this. Another, and perhaps more important,
reason for performing these calculations is to illustrate how the method of matched asymptotic expansions
can be applied to nano-scale models (such as the Nernst–Planck equations and our concentrated solution
model) to systematically derive macro-scale models and non-intuitive boundary conditions (such as the
Butler–Volmer condition). This method thus provides a way of testing nano scale models against relatively
easily obtained macroscopic measurements.

One potential difficulty in applying the concentrated-solution model (not encountered when the diffu-
sivities are constants) to practical problems is the nonlinear dependence of ε, the dielectric constant, on the
concentrations of the various species. While it is feasible to measure this experimentally for charge-neutral
solutions, it is difficult to measure in highly charged solutions, such as those appearing in the Debye layer
(mainly because such solutions are only ever found in extremely small volumes). Another difficulty is found
in generalising the concentrated-solution model to higher dimensions. Here the model is underspecified,
unless a momentum balance is added to the conservation equations described in Sect. 3. One way to do
this would be to follow the approach adopted by Drew [21], for example, in his treatment of multi-phase
flows.
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The models discussed herein have been formulated on the assumption that the electrode is a good
conductor, which may not be the case once a layer of reactant has built up on it, and that there are ample
sites available for reaction on the electrode (i.e., the solid reactant on the electrode is in plentiful supply).
Generalisations of the models to take account of both of these effects and to investigate porous electrodes
would make interesting subjects for a future study. Another interesting way to generalise this work would
be to use a more complex microscale model of the electrolyte (accounting for pairwise correlations between
ion positions) to replace the Nernst–Plank equations and the concentrated solution model used in Sects. 2
and 3. An example of such a possible replacement model is the Rosenfeld density functional theory [22]
which has been extended to include dynamic effects by Gillespie et al. [23].

Acknowledgements We would like to thank Dr. Mark McGuinness for useful discussions and anonymous referees for
bringing to our attention related work and for a number of useful suggestions for improvements to the manuscript.

Appendix A: Parameters and variables used in the models

Parameters

zn : valency of the negative ions
zp : valency of the positive ions
qe : charge on a proton 1.602 × 10−19 Amp s

Mn : drag on negative ion N s m−1

Mp : drag on positive ion N s m−1

Dn : diffusion coefficient of the negative ions m2 s−1

Dp : diffusion coefficient of the positive ions m2 s−1

Dw : diffusion coefficient of water m2 s−1

k : Boltzmann’s constant 1.381 × 10−23 N m K−1

T : absolute temperature K
ε0 : permittivity of free space 8.854 × 10−12 Amp s V−1 m−1

εw : permittivity of water ≈80ε0 Amp s V−1m−1

ε : permittivity of electrolyte Amp s V−1m−1

Av : Avogadro’s number 6.026 × 1023 mol−1

K0 : reaction rate constant mol1−αn m3αn−2 s−1

K1 : reaction rate constant mol1−βp m3βp−2 s−1

K5, K2 : reaction rate constant mol s−1 m−2

K4 : reaction rate constant mol1−(βp+αn)m3(βp+αn)−2 s−1

� : resistance of the circuit Ohms
Hn : Volume occupied per mole of Nn− ions mol−1 m3

Hp : Volume occupied per mole of Pp+ ions mol−1 m3

Hw : Volume occupied per mole of water 1.8 × 10−5 mol−1 m3

ζn, γn : moles of negative ions produced per mole of reaction : dimensionless
ζp, γp : moles of positive ions produced per mole of reaction : dimensionless
ζw, γw : moles of water produced per mole of reaction : dimensionless

Variables
y : distance from left-hand electrode m

N : concentration of Nn− ions mol m−3

P : concentration of Pp+ ions mol m−3

W : concentration of water molecules mol m−3
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Fn : flux of negative ions mol s−1 m−2

Fp : flux of positive ions mol s−1 m−2

Fw : flux of water mol s−1 m−2

ρ : charge density in electrolyte Amp s m−3

R : reaction rate of Nn− and Pp+ ions on electrode mol s−1 m−2

S : reaction rate of Nn− and Pp+ ions on electrode mol s−1 m−2

E : electric field Vm−1

C : surface charge density on electrode Amp s m−2

φ : the electric potential V
J : electric current flux flowing across electrode Amp m−2

in the ey direction
Y : position of the surface of the electrode m
v : bulk velocity of the electrolyte ms−1

vn : advection velocity of the negative ions ms−1

vp : advection velocity of the positive ions ms−1

Appendix B: Result of the matched asymptotic analysis in the case δ � 1 and ℵ = O(1/δ)

Here we consider the regime in which δ � 1 and ℵ = O(1/δ), non-dimensionalise lengths with the width
of the cell and introduce the new parameter � defined by ℵ = �/δ. This corresponds to the distinguished
limit in which charging of the electrode is the rate-limiting step and in which the diffusion timescale and
that for electrode charging are of the same order. In terms of the dilute model the following analysis is
analogous to that carried out in Sect. 2.6. Mathematically the asymptotic analysis broadly parallels that
carried out in Sect. 3.1; the expansion of the outer variables being given by (110) and that of the inner
variables by (125), with the one exception that now

Y = δY0(t)+ · · · .

Because of the similarity with Sect. 3.1 we omit the details here and just give the results.
On dropping sub- and superscripts the leading-order outer problem for N(o)

0 is

∂N
∂t

= ∂

∂y

[{
zphn + znhp

zp(zpκp + znκn)

(
znκn(κw − κp)+ zpκp(κw − κn)

)
N + κnκp(zp + zn)

zpκp + znκn

}
∂N
∂y

]
, (186)

∂N
∂y

∣∣∣∣
y=0

= 0,
∂N
∂y

∣∣∣∣
y=1

= 0, (187)

and is closed by an initial condition of the form N|t=0 = f (y). The leading-order outer problem for the
potential is

∂φ

∂y
=
(

κn − κp

zpκp + znκn

)
1
N
∂N
∂y

. (188)

A boundary condition on this equation is given by φ|y=0 = limξ→+∞ φ̃ where Ñ, P̃ and φ̃ are the leading-
order inner variables at the left-hand electrode (once again we have dropped sub- and superscripts) and
satisfy
(
κnκp + Ñhnκp(κw − κn)+ P̃hpκn(κw − κp)

) ∂Ñ
∂ξ

+
(

znhnκnκpÑ2 + hp
(
znκnκp − znκnκw − zpκpκw

)
ÑP̃ − znκpκnÑ

) ∂φ̃
∂ξ

= 0, (189)



274 G. Richardson, J. R. King

(
κnκp + Ñhnκp(κw − κn)+ P̃hpκn(κw − κp)

) ∂P̃
∂ξ

−
(

zphpκnκpP̃2 + hn
(
zpκnκp − zpκpκw − znκnκw

)
ÑP̃ − zpκnκpP̃

) ∂φ̃
∂ξ

= 0, (190)

∂

∂ξ

(
ε(ν)

∂φ̃

∂ξ

)
= znÑ − zpP̃ where ν = 1 − hnÑ − hpP̃, (191)

�
dC
dt

= −(zpγp − znγn)R(Ñ|ξ=0, P̃|ξ=0)+ J, (192)

φ̃|ξ=0 = 0, ε(ν)
∂φ̃

∂ξ

∣∣∣∣∣
ξ=0

= −C, (193)

Ñ → N|y=0, P̃ → zn

zp
N|y=0 as ξ → +∞, (194)

where y = ξ/δ and initial conditions are imposed on C at t = 0. Note also that the rate of change of Y
in this limit is small O(δ). The potential drop across the cell � is given by � = φ̂|η=0 where φ̂ is found by
solving (188), for φ, determining φ|y=1, and subsequently solving the leading-order inner problem (for N̂,
P̂ and φ̂) on the right-hand electrode

(
κnκp + N̂hnκp(κw − κn)+ P̂hpκn(κw − κp)

) ∂N̂
∂η

+
(

znhnκnκpN̂2 + hp
(
znκnκp − znκnκw − zpκpκw

)
N̂P̂ − znκpκnN̂

) ∂φ̂
∂η

= 0, (195)

(
κnκp + N̂hnκp(κw − κn)+ P̂hpκn(κw − κp)

) ∂P̂
∂η

−
(

zphpκnκpP̂2 + hn
(
zpκnκp − zpκpκw − znκnκw

)
N̂P̂ − zpκnκpP̂

) ∂φ̂
∂η

= 0, (196)

∂

∂η

(
ε(ν)

∂φ̂

∂η

)
= znN̂ − zpP̂ where ν = 1 − hnN̂ − hpP̂, (197)

�
dB
dt

= −(zpςp − znςn)S(N̂|η=0, P̂|η=0)− J, (198)

ε(ν)
∂φ̂

∂η

∣∣∣∣∣
η=0

= B, (199)

N̂ → N|y=1, P̂ → zn

zp
N|y=1, φ̂ → φ|y=1 as η → +∞. (200)

Here y = 1 − δη and initial conditions must be imposed on B (the charge density on the electrode) which
evolves according to (198).

Once again, as in Sect. 2.6, there are solutions to the model, with the form N = constant, P = constant,
φ = φ(t), which trivially satisfy the PDEs (186–188) and result in a simplified model consisting of the two
sets of ODEs (189–194) and (195–200).

Remark As in the case of the dilute electrolyte (see Sect. 2.6) these results are easy to generalise to the
case in which the lengthscale L corresponding to ℵ = O(1/δ) is much smaller than the cell width.
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